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1 Classical Linear Regression Model

1.1 Model and Gauss-Markov Assumptions

Let y ∈ Rn, X ∈ Rn×k and β ∈ Rk the parameter of interest. The general form of the
multiple linear regression model is

y = Xβ + ε. (1.1)

Assumption 1.1: Gauss Markov Assumptions + Normality

The Gauss-Markov Linear Regression Assumptions are given below

(i) Linearity: The true model is y = Xβ + ε, with E(ε) = 0

(ii) Full rank: rank(X) = k ≤ n =⇒ X′X is invertible

(iii) Exogeneity: E[ε | X] = 0

(iv) Spherical error: V(ε | X) = σ2 In

(v) Normality: ε|X ∼ N (0, σ2 In)

We quickly discuss the intuition and implications of some of the assumptions below.

The full rank assumption just states that it is impossible to estimate a k number of β with n
observations if k > n. This assumption also prevents from perfect collinearity.

The exogeneity assumption deserves a longer treatment. Consider the case where X are
treated as random variables. First, notice that full independence, X ⊥⊥ ε implies that
for any measurable g(·) with finite moments, E(g(X)ϵ) = E(ε)E(g(X)). Specifically,
E(X′ε) = E(X′)E(ε) = 0 in this context. Mean independence only implies that E(ε|X) =
E(ε) = 0. For our next argument, we introduce the following proposition.

Proposition 1.1: Law of Iterated Expectations (LIE)

Let Z be an integrable random variable and let G a sigma-algebra generated by a
partition. Then, E(E(Z|G)) = E(Z)

Finally, notice that in this context, we can write the covariance Cov(εi, xi) = E(εixi)−
E(εi)E(xi) = E(E(εixi|xi)) = E(xiE(εi|xi)) = 0, where the second equality is an applica-
tion of LIE.
An interesting observation is hence that independence =⇒ mean independence =⇒
uncorrelatedness.

The spherical errors assumption can be rewritten as follows:

V(ε | X) = σ2 In ⇔ V(εi | X) = σ2, ∀i and Cov(εi, ε j | X) = 0, ∀i ̸= j
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Therefore, we can see that this is an assumption about homoskedasticity and autocorre-
lation. Notice that iid assumption for εi | X implies spherical errors, but the other way
around is not true.

1.2 Estimation procedures

1.2.1 Minimum Distance Estimation - OLS

The problem is

β̂ = arg min
β

n

∑
i=1

(yi − x′i β)
2 = arg min

β

(y − Xβ)′(y − Xβ) = arg min
β

S(β)

With S(β) being the sum of squared residuals. The necessary condition for a minimum is a
first order condition (FOC):

∂S(β)

∂β

∣∣∣∣
β̂

= 0 − 2X′y + 2X′Xβ̂ = 0

This is equivalent to X′ ε̂ = 0, since ε̂ = y − Xβ̂ are the residuals.

We solve this as follows, and these equations are also called the normal equation:

−2X′y + 2X′Xβ̂ = 0 ⇒ β̂OLS = (X′X)−1X′y

Notice that by assumption (ii), the inverse of exists (X′X), which ensures that β̂OLS is
unique. This estimator is a minimun, by second order conditions:

∂2S(β)

∂β∂β′

∣∣∣∣
β̂

= 2X′X

This matrix must be positive definite.

1.2.2 Method of Moments (MM)

The MM estimator of β is based on the following moment conditions

E(xijεi) = 0 j = 1 . . . k

These are the orthogonality conditions: errors are uncorrelated with the regressors.
β̂MM ensures that the sample analogue moment conditions are satisfied. To find the
estimator, replace the expectation with the sample average

1
n

n

∑
i=1

xij ε̂i = 0 ∀j or
1
n

n

∑
i=1

xij
(
yi − x′i β̂MM

)
= 0
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In matrix notations this implies that

1
n

X′(y − Xβ̂MM) =
1
n

X′ ε̂ = 0 ⇒ β̂MM = β̂OLS

The MM estimator of σ2 is based on the moment condition E(ε2
i ) = σ2 using the sample

analogue moment

σ̂2
MM =

1
n

n

∑
i=1

ε̂2
i .

1.2.3 Maximum Likelihood Estimation (MLE)

The MLE requires us to have a sample of N independently drawn observations (y1, x1), . . . , (yN , xN)
with conditional distribution f (y|x, β) where the functional form f is known but parame-
ters β are not. Given assumptions (i) and (v), we have that y|X ∼ N(Xβ, σ2 In) and that
y1 . . . yn are independent. We want to estimate β, and hence we choose β̂MLE to maximize
P(y1, y2, ..., yN|β̂MLE, x1, x2, ..., xN), that is the probability of observing the data if β̂MLE
was true.

f (y1 . . . yn|X; β, σ2) =
n

∏
i=1

f (yi|X; β, σ2) − independence

=
n

∏
i=1

1√
2πσ

· exp
{
− 1

2σ2 (yi − x′i β)
2
}

− normality

=

(
1√
2πσ

)n
· exp

{
− 1

2σ2

n

∑
i=1

(yi − x′i β)
2

}
=

(
1√
2πσ

)n
· exp

{
− 1

2σ2 S(β)

}
The log likelihood function is

l(β, σ2; y1 . . . yn, x1 . . . xn) = −n
2

log(2πσ)− n
2

log(σ2)− 1
2σ2 S(β)

We take two FOCs wrt to each unknown paramter (β and σ2).

∂l(β, σ2)

∂β

∣∣∣∣
β̂MLE,σ̂2

MLE

= − 1
2σ̂2

MLE

∂S(β̂MLE)

∂β
= 0 ⇔ ∂S(β̂MLE)

∂β
= 0 (1.2)

This shows that maximizing the likelihood under normality with respect to β leads to
β̂MLE = β̂MM = β̂OLS.

∂l(β, σ2)

∂σ2

∣∣∣∣
β̂MLE,σ̂2

MLE

= − n
2σ̂2

MLE
+

1
2σ̂4

MLE
S(β̂MLE) = 0 (1.3)
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1.3 Goodness of Fit

We define different objects required to study goodness of fit.

Definition 1.1: Total sum of squares

The Total Sum of Squares is given by

TSS = ∑
i
(yi − ȳi)

2

Definition 1.2: Explained sum of squares

The Explained Sum of Squares is given by

ESS = ∑
i
(ŷi − ȳi)

2

Definition 1.3: Residual sum of squares

The Residuals Sum of Squares is given by

RSS = ∑
i
(yi − ŷi)

2

Some intuition:1 The TSS represents the total variability in the dependent variable, including
the portions of variability both explained and unexplained by the regression model. By
its nature, the TSS reflects the overall dispersion of individual values of the observed de-
pendent variable from its mean value. The ESS captures the portion of the total variability
in the dependent variable explained by the regression model. Finally, the RSS reflects the
remaining error, or unexplained variability, which is the portion of the total variability in
the dependent variable that can’t be explained by the regression model.

With these definitions in mind, we can now define three alternative definitions of the R2.

Definition 1.4: Three alternative definitions of R2

(i) R2
1 = 1 − RSS

TSS

(ii) R2
2 = [∑i(yi−ȳ)(ŷi− ¯̂yi)]

2

[∑i(yi−ȳ)]2[(ŷi− ¯̂yi)]2

(iii) R2
3 = ESS

TSS

1This website provides cool intuition.
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Proposition 1.2: Equivalence between different definitions of R2

When an intercept is included in the model, all three measures are the same and
R2 ∈ [0, 1].

Proof. First, we can show that R2
1 = R2

3.

TSS = ∑(yi − ȳ)2 = ∑ [(ŷi − ȳ) + (yi − ŷi)]
2

= ESS + RSS + 2 ∑(ŷi − ȳ)(yi − ŷi)

= ESS + RSS + 2 ∑(ŷi − ȳ)εi

The last therm is 0 since residuals are orthogonal to the fitted values. Therefore, we have
that ESS

TSS = 1 − RSS
TSS and therefore R2

3 = R2
1.

R2
2 =

[∑(yi − ȳ)(ŷi − ¯̂y)]2

[∑(yi − ȳ)2] [∑(ŷi − ¯̂y)2]
=

[∑(yi − ȳ)(ŷi − ȳ)]2

TSS · ESS

The numerator can be re-written as follows:(
∑(yi − ȳ)(ŷi − ȳ)

)2
=
(
∑[(ŷi + ei − ȳ)(ŷi − ȳ)]

)2

=
(
∑[(ŷi − ȳ) + ei](ŷi − ȳ)

)2

=
(
∑(ŷi − ȳ)2 + ∑ ei(ŷi − ȳ)

)2

= ESS2

Therefore, we have

R2
2 =

ESS2

ESS ∗ TSS
=

ESS
TSS

= R2
3

The main drawback of the R2 is that it never decreases as we increase the number of
regressors, even if the new variables have no explanatory power. The adjusted R2 allows
to correct for the number of explanatory variables:

R̄2 = 1 − RSS/(n − k)
TSS/(n − 1)

Suppose that we are in a case where we add an additional regressor with no explanatory
power. RSS does not change (specifically it does not decrease, what we desire), but (n − k)
goes down and therefore the R̄2 goes down as well.

1.4 Geometric interpretation of OLS and Frisch–Waugh–Lovell (FWL)

1.4.1 Quick linear algebra recap

We provide some basic definitions and one proposition that are useful in our application.
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Definition 1.5: Span

Consider the vector space V and a set of vectors A ⊆ V. The span of A, denoted
spanA, is the set of all linear combinations of vectors in A. This is given by

spanA =

{
n

∑
i=1

αivi|∀i ∈ N, αi ∈ R, vi ∈ A

}

Definition 1.6: Column Space (Range)

Consider an n × K matrix X with columns x1, x2, . . . , xK. The column space of X,
denoted R(X) or col(X), is the set of all possible linear combinations of the column
vectors of X. Equivalently, the column space is the span of the columns of X:

R(X) = span{x1, x2, . . . , xK} =

{
K

∑
j=1

β jxj | β j ∈ R

}

Geometrically, R(X) is the subspace of Rn generated by the columns of X.

Definition 1.7: Linear Independence

Given a vector space V, a set of vectors {v1, ..., vn} is linearly dependent if there exists
scalars {α1, ..., αn}, not all zero, such that ∑i αivi = 0. A set of vectors {v1, ..., vn} is
linearly independent if it is not linearly dependent.

Proposition 1.3: Equivalence

Consider an n × n matrix M. The following are equivalent.

1. M is invertible

2. The row vectors of M are linearly independent

3. The column vectors of M are linearly independent

1.4.2 Geometric interpretation of OLS

Consider the model in matrix form. The fitted value is ŷ = Xβ̂, the residual is ê = y − Xβ̂,
and the orthogonality condition is given by X′ ê = 0. We first need to introduce two
important matrices in linear algebra.
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Definition 1.8: Projection (with properties)

The projection matrix is defined as PX = X(X′X)−1X′. It satisfies the following
properties:

1. PX = P′
X (symmetry)

2. P2
X = PX (idempotent)

3. PXX = X

4. PXy = ŷ (projection)

5. PX ê = 0

6. tr(PX) = k

Proof. We prove properties 4 to 6 here by inspection of the definitions, for illustration. For
4,

PXy = X(X′X)−1X′y = Xβ̂ = ŷ

For 5,

PX ê = X(X′X)−1X′(y − Xβ̂) = X(X′X)−1X′y − X(X′X)−1X′X(X′X)−1X′y

= X(X′X)−1X′y − X(X′X)−1X′y = 0

Now, for 6,

tr(PX) = tr(X(X′X)−1X′) = tr((X′X)−1X′X) = tr(Ik) = k

where the second equality comes from the fact that tr(AB) = tr(BA).

The key insight from the 5th property is that the projection on a vector orthogonal to X is
equal to 0. OLS chooses the fitted vector ŷ as the point in the column space col(X) that is
closest to y in Euclidean distance, so the residual ê = y − ŷ is the perpendicular from y to
that subspace (hence X′ ê = 0). The projection PX “keeps” components along col(X) and
“kills” components orthogonal to it, which is why PXy = ŷ and PX ê = 0.

Definition 1.9: Annihilator matrix (with properties)

The anihilator matrix (or orthogonal projection matrix) is defined as MX = Ik − PX. It
satisfies the following properties:

1. MX = M′
X (symmetry)

2. M2
X = MX (idempotent)

3. MXX = 0 (annihilator matrix)

4. MXy = ê (orthogonal projection)

10



5. MX ê = 0

6. tr(MX) = n − k

Equivalently, the residual-maker MX = I − PX removes everything explainable by X since
MXy = ê and MXX = 0. Note that by definition, the RSS is just ê′ ê = y′M′

x Mxy = y′MXy.

Before moving to the Frisch–Waugh–Lovell Theorem, I consruct a simple low-dimensional
example to understand better what we just discussed. Figure 1.4.2 helps visualize.

Example 1.1: Geometric OLS in R3

Consider a case where the data space is R3 (n = 3), and we have two explanatory
variables, x1 and x2 (K = 2). The matrix X is 3 × 2:

X =

x11 x21
x12 x22
x13 x23

 =
(
x1 x2

)
The column space R(X) is the span of the two columns, x1 and x2.

R(X) = span{x1, x2}

Since K = 2, R(X) is a 2-dimensional plane (the shaded gray area) embedded within
the 3-dimensional space R3. Now, the vector y lies somewhere in R3, generally off the
plane R(X).

Now, the expression Xβ̂ is, by definition, a linear combination of the columns of X:

ŷ = Xβ̂ =
(
x1 x2

) (β̂1
β̂2

)
= β̂1x1 + β̂2x2

The OLS estimator finds ŷ on the plane R(X) that is closest to y. This closest point is
found by dropping a perpendicular line from y to the plane. In other words, we find
the vector ŷ on the x1, x2 plane that makes the residual ê = y − ŷ orthogonal to the
plane.

Since ŷ is formed by scaling x1 by β̂1 and x2 by β̂2 and summing them up, ŷ must lie
on the plane (the column space R(X)). The key is that the orthogonality condition
(X′ê = 0) is what forces the solution β̂. If you choose any arbitrary β, the resulting Xβ
will be a vector on the plane, but the residual y − Xβ will not be perpendicular to the
plane (it will just be some other vector).

Finally, ŷ = PXy means PX is the matrix that transforms the raw data vector y into
the best possible linear combination of X (the predicted vector ŷ). It collapses the
n-dimensional vector y onto the K-dimensional subspace R(X).

11



Figure 1: Projection of Y onto X1 and X2 (Figure 3.3 from Hansen, 2022)

1.4.3 Frisch–Waugh–Lovell (FWL)

We are now well-equiped to study the Frisch–Waugh–Lovell (FWL) theorem.

Consider the regression y = Xβ + ε, which can be rewritten, partitioning matrix X as
X = [X1 : X2]. We can hence rewrite the regression as y = X1β1 + X2β2 + ε. No-
tice that dim(X1) = n × k1, dim(X2) = n × (k − k1). Additionally, recall that Pj =

Xj(X′
jXj)

−1X′
j, Mj = I − Pj, ∀j

Our OLS estimator is as follows:

[
β̂1

β̂2

]
= (X′X)−1X′y =

[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

]−1 [X′
1y

X′
2y

]

Notice that by the inverse formula for partitioned matrix, we can rewrite

[
β̂1

β̂2

]
=

[
S−1

1 −S−1
1 X′

1X2 (X′
2X2)

−1

− S−1
2 X′

2X1 (X′
1X1)

−1 S−1
2

] [
X′

1y
X′

2y

]
,

12



where S1 := X′
1X1 − X′

1X2 (X′
2X2)

−1X′
2X1, S2 := X′

2X2 − X′
2X1 (X′

1X1)
−1X′

1X2.

We can hence find an expression for β̂1, β̂2.

β̂1 = S−1
1

(
X′

1y − X′
1X2 (X′

2X2)
−1X′

2y
)

=
(
X′

1(I − X2(X′
2X2)

−1X′
2)X1

)−1X′
1(I − X2(X′

2X2)
−1X′

2)y

= (X′
1M2X1)

−1(X′
1M2y),

β̂2 = S−1
2

(
X′

2y − X′
2X1 (X′

1X1)
−1X′

1y
)

=
(
X′

2(I − X1(X′
1X1)

−1X′
1)X2

)−1X′
2(I − X1(X′

1X1)
−1X′

1)y

= (X′
2M1X2)

−1(X′
2M1y)

Now, since M2 is symmetric and idempotent, we have:

β̂1 = (X′
1M′

2M2X1)
−1(X′

1M′
2M2y) = (X̃′

1X̃1)
−1(X̃′

1ε̃2),

where X̃1 = M2X1 and ε̃2 = M2y.

Therefore, the coefficient estimator β̂1 is algebraically equal to the least squares regression
of ε̃2 on X̃1. The conclusion follows since M2X1 are the residuals from a regression of X2
on X1, and M2y are the residuals of a regression of X2 on y.

Now, for the residuals, in the case of OLS, we have that ε̂ = y − Xβ̂ = y − PXy = MXy.
Notice that it can be written as y − X1β̂1 − X2β̂2. Similarly, we have that ε̃ = ε̃2 − X̃1β̂1 =
M2y − M2X1β̂1. If we pre-multiply ε̂ by M2, we get

M2ε̂ = M2y − M2X1β̂1 − M2X2β̂2

Notice that by properties of the annihilator matrix, for any matrix X, MXX = 0. It is easy to
see since MXX = (I − PX)X = 0 as PXX = X. Therefore, we have that M2X2β̂2 = 0, which
implies that M2ε̂ = M2y − M2X1β̂1. The conclusion follows by orthogonality condition
X′ ε̂ = 0 =⇒ X′

2ε̂ = 0:

M2ε̂ = ε̂ − X2(X′
2X2)

−1X′
2ε̂ = ε̂

We have hence proven the following theorem.

Theorem 1.1: Frisch–Waugh–Lovell Theorem (FWL)

The OLS estimator of β1 and the OLS residuals can be computed by either the OLS
regression or using the following algorithm:
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1. Regress y on X2, obtain ε̃2

2. Regress X1 on X2, obtain residuals X̃1

3. Regress ε̃2 on X̃1, and obtain OLS estimator β̂1 and residuals ε̂

Additionally, the residual-based regression of M2y on M2X1 yields residuals that are
numerically equivalent to those obtained from regressing y on (X1 : X2).

We are giving some intuition about the theorem below.

1. Regress y on X2, obtain ε̃2. This means that we are calculating the part of y which
is not explained by X2. In other words, we are projecting y onto the space which is
orthogonal to X2, so we are projecting X2 out of y.

2. Regress X1 on X2, obtain residuals X̃1. Again, we are computing the part of X1 which
is not explained by X2, or we are projecting X1 onto the space which is orthogonal to
X2.

3. Regress ε̃2 on X̃1, and obtain OLS estimator β̂1 and residuals ε̂. The OLS estimator
for the final regression is β̂ = (X̃′

1X̃1)
−1X̃1ε̃2 = (X′

1M′
2M2X1)

−1(X′
1M′

2M2y)

1.5 Finite-Sample Properties

1.5.1 Unbiasedness

Recall our model y = Xβ + ε, which satisfies properties (i) to (v) (Gauss Markov + normal-
ity). Our estimator is therefore β̂ = (X′X)−1X′y. It is important to understand that β̂ is a
random variable. We can now compute the conditional mean given X.

E[β̂ | X] = (X′X)−1X′E[y | X] = (X′X)−1X′Xβ̂ + (X′X)−1X′E[ε|X] = β (1.4)

The last equality comes from assumption (iii). I like the interpretation Hansen has of this
result. He says that the estimator β̂ is unbiased for β, conditional on X means that the
conditional distribution of β̂ is centered at β. Conditional on X means that the distribu-
tion is unbiased for any realisation on the regressor matrix X. Additionally, notice that
conditional unbiasedness implies unconditional unbiasedness by LIE:

E(β̂) = E[E[β̂ | X]] = β

Given (i) to (iv), we can define an estimator that is an unbiased estimator of σ2: s2 = ε̂′ ε̂
n−k

This estimator gives rise to the standard error of the regression, s, which is the square root
of s2. Recall that ε̂ = y − ŷ. (i) and (ii) yield

ε̂ = MXy = MX(Xβ + ε) = MXε, hence

ε̂′ ε̂ = ε′MXε with MX = I − X(X′X)−1X
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then: a) first equality, we divide by n− k to adjust biases (see at the end), b) second equality,
we introduce the trace operator, c) third equality exploit the linearity of tr and E

E(s2|X) =
1

n − k
E(ε′MXε|X) =

1
n − k

E[tr(ε′MXε)|X] =
1

n − k
tr[MX(E(ε′ε|X)]

recalling A.3 and A.4

E(s2|X) =
1

n − k
tr[MXσ2 I] =

σ2

n − k
tr(MX)

We can show that
tr(MX) = tr(In − X(X′X)−1X′)

tr(In)− tr(X(X′X)−1X′) = tr(In)− tr(Ik) = n − k

then we can simplify

E(s2|X) =
1

n − k
tr[MXσ2 I] =

σ2

n − k
n − k = σ2

s2 is conditionally unbiased. Using the law of iterated expectations, we can show that s2 is
unconditionally unbiased too.

1.5.2 Variance

Given observations (i) to (iii), we have that the conditional variance is given by:

V(β̂|X) = E
[
(β̂ − E[β̂|X](β̂ − E[β̂|X])′ | X

]
= E

[
(β + (X′X)−1X′ε − β)((β + (X′X)−1X′ε − β)])′ | X

]
= E

[
(X′X)−1X′εε′X(X′X)−1

]
This is the general variance-convariance matrix where the diagonal elements are V(β̂k|X)
and the off-diagonal elements are Cov(β̂k, β̂ℓ|X). If we assume spherical errors (iv),
εε′ = σ2, and the variance becomes

V(β̂|X) = σ2(X′X)−1

For X non-stochastic, V(β̂|X) = V(β̂). If X is stochastic, we have

V(β̂) = E(V(β̂|X)) + V(E(β̂|X)) = σ2E
[
(X′X)−1

]
The last equality comes from the fact that β is just a number, so has variance 0.
The variance can be estimated as follows

V̂(β̂) = s2(X′X)−1, where s2 =
ε̂′ ε̂

n − k

The standard error of the regression is simply the square root of s2. The standard of β̂ j is

SE(β̂ j) =
√

V̂(β̂) =
√

s2(X′X)−1
jj
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Example 1.2: Variance in simple regression model

Consider the simple regression

yi = α + βxi + εi, E[εi | X] = 0, V(εi | X) = σ2.

Conditional on X,

V(β̂ | X) =
σ2

∑n
i=1(xi − x̄)2 :=

σ2

(n − 1)S2
x

,

where x̄ = 1
n ∑n

i=1 xi and S2
x = 1

n−1 ∑n
i=1(xi − x̄)2 is the sample variance of x.

The key takeways here are:

1. The (n − 1) in the denominator highlights that larger samples reduce the vari-
ance.

2. The S2
x in the denominator highlights that greater variability of the regressors

reduce the variability of our estimators.

We can now state one of the most important theorems so far.

Theorem 1.2: Gauss Markov Theorem

Let assumptions (i) - (iv) to hold. Then,

• The least square estimator β̂ is the minimum variance linear unbiased estimator.

• For any vector of constants w, the mimimum variance linear unbiased estimator
of w′β is w′ β̂.

Proof. Let β̃ a linear estimator where β̃ = Cy. Unbiasedness requires

E[β̃ | X] = CXβ + E(ε|X) = CXβ =! β =⇒ CX = Ik.

Under spherical errors, V(y | X) = σ2 In, so

V(β̃ | X) = σ2CC′, V(β̂ | X) = σ2(X′X)−1.

Write the residual-maker MX := In − PX with PX := X(X′X)−1X′. Note MX is symmetric,
idempotent, and positive semidefinite, and MXX = 0.

Use the decomposition
C = (X′X)−1X′ + CMX
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(which holds because multiplying both sides by X yields Ik). Then

V(β̃ | X) = σ2[(X′X)−1X′ + CMX
][
(X′X)−1X′ + CMX

]′
= σ2

{
(X′X)−1X′X(X′X)−1 + CMX MXC′

}
(cross terms vanish since X′MX = 0)

= σ2(X′X)−1 + σ2CMXC′.

Hence
V(β̃ | X)− V(β̂ | X) = σ2 CMXC′ ≥psd 0,

because MX is positive semidefinite. Therefore OLS has the smallest variance among all
linear unbiased estimators.

Finally, for any fixed w ∈ Rk,

V(w′ β̃ | X)− V(w′ β̂ | X) = w′[V(β̃ | X)− V(β̂ | X)
]
w = σ2 (C′w)′MX(C′w) ≥psd 0,

so every linear combination w′ β̂ is minimum-variance among linear unbiased estimators.

1.6 Asymptotic Properties of OLS

1.6.1 Probability Theory foundations

We start by defining concepts that will be useful in our treatment of asymptotic theory.
First, we need to define a (non-exhaustive) list of modes of convergence for random
variables.

Definition 1.10: Convergence of random variables

Consider a sequence Xn of random variables.

• The strongest mode of convergence we mention here is almost sure convergence.
Xn is said to convergence a.s. to X (or Xn

a.s.−→ X) if for every ϵ > 0,

P

(
lim sup

n→∞
(|Xn − X|) > ϵ

)
= 0

• Xn is said to converge in probability to X (or Xn
p−→ X) if for every ϵ > 0,

lim
n→∞

P (|Xn − X| > ϵ) = 0

• Let FXn(x) the CDF of Xn and FX(x) the CDF of X. Xn is said to converge in

probability to X (or Xn
d−→ X) if for every point of continuity of F,

FXn(x) → FX(x)
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Now, we need to introduce two of the most important concepts in probability theory: laws
of large numbers (LLN) and central limit theorems (CLT). We start by three LLNs. The
first one is the one we will mostly use. It has the weakest assumptions, but turns out to be
hard to prove. I will therefore prove Chebyshev’s (like) WLLN, which will be useful later
once we relax the spherical error assumption.

Theorem 1.3: Khinchin’s Weak Law of Large Number

Suppose that Xi, i ≥ 1 is an i.i.d. sequence of random variables with a finite first
moment (i.e., E(|Xi|) < ∞). Let µ = E(Xi).Then, the sample mean converges in
probability to the expected value:

1
n

n

∑
i=1

Xi
p−→ µ

Now, we can state a stronger statement.

Theorem 1.4: Kolmogorov’s Law of Large Numbers

Suppose that Xi, i ≥ 1 is an i.i.d. sequence of random variables with common mean
µ = E(X1).The sample mean converges almost surely to the expected value,

1
n

n

∑
i=1

Xi
a.s.−→ µ

if and only if the expected value is finite:

E(|X1|) < ∞

Finally, we state the Chebyshev’s WLLN, which uses assumption on the second moment.

Theorem 1.5: Chebyshev’s WLLN

Let {Xn} be a sequence of uncorrelated random variables with finite means µi = E[Xi]
and such that

lim
n→∞

1
n2

n

∑
i=1

V(Xi) = 0.

Then
1
n

n

∑
i=1

Xi −
1
n

n

∑
i=1

µi
p−→ 0.

Equivalently,
1
n

n

∑
i=1

Xi
p−→ 1

n

n

∑
i=1

E[Xi].
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Proof. Let X̄n = 1
n ∑i Xi. First, notice that

E (X̄n) =
1
n ∑

i
E(Xi)

Additionally, we can write the variance as

V(X̄n) = V

(
1
n ∑

i
Xi

)
=

1
n2

n

∑
i=1

V(Xi) +
1
n2

n

∑
i=1

n

∑
j=1

Cov(Xi, Xj) =
1
n2

n

∑
i=1

V(Xi) −→ 0

where the last equality comes from uncorrelatedness and convergence comes by assump-
tions. Now, by Chebyshev’s Inequality, we know that for some ε > 0

P

(
| X̄n −

1
n ∑

i
E(Xi) |> ε

)
≤ V(X̄n)

ε2 −→ 0

Corollary 1.1: Chebyshev’s WLLN for Identical Means

Under the assumptions of Theorem 1.5, suppose in addition that

E[Xi] = µ for all i.

Then
1
n

n

∑
i=1

Xi
p−→ µ.

Proof. By Theorem 1.5,
1
n

n

∑
i=1

Xi =
1
n

n

∑
i=1

E[Xi] + op(1).

If E[Xi] = µ for all i, then
1
n

n

∑
i=1

E[Xi] = µ,

so the conclusion follows.

The condition on the second moments stated in 1.5 is actually much stronger than what
we need. We can introduce the concept of uniform integrability to find weaker sufficient
conditions. This is not directly relevant for the course, so I show that in Appendix A.1.

We can now state the most standard CLT, which applies only to iid data.
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Theorem 1.6: Lindeberg-Levy’s Central Limit Theorem

Suppose that Xi, i ≥ 1 is an i.i.d. sequence of random variables with common finite
mean µ = E(X1) and common finite, positive variance σ2 = Var(X1) < ∞. Then,

1√
n

n

∑
i=1

(Xi − µ)
d−→ N (0, σ2)

Now, if we face a case where we don’t have iid data (for instance if we have heteroskedas-
ticity), we need to use another CLT.

Theorem 1.7: Lindeberg-Feller’s Central Limit Theorem

Let {Xn} be an integrable sequence of independent random variables with 0 <
V(Xi) < ∞ for all n. Let E(Xi) = µi and V(Xi) = σ2

i . Now, let

Cn :=
√

∑
i

σ2
i , where lim

n→∞
max
i∈[1,n]

σ2
i

C2
n
= 0

Then, for any ε > 0,

1
Cn

∑
i
(Xi − µi)

d−→ N (0, 1) ⇐⇒ lim
n→∞

1
C2

n
∑

i
E
[
(Xi − µi)

21{|Xi − µi| ≥ εCn}
]
= 0

The condition on the right-hand side of the equivalence operator is known as the Linde-
berg Condition. This condition requires that the sum of the extreme-value variances (the
numerator) becomes negligible compared to the total variance C2

n (the denominator) as
n → ∞.

Now, we can state two other important results that will come handy in our applications.

Theorem 1.8: Continuous Mapping Theorem

Let {Xn} be a sequence of random variables (or vectors) and X be a random variable.
Let g be a function that is continuous
Then the following hold:

• If Xn
a.s.−→ X then g(Xn)

a.s.−→ g(X)

• If Xn
p−→ X then g(Xn)

p−→ g(X)

• If Xn
d−→ X then g(Xn)

d−→ g(X)
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Theorem 1.9: Slutsky’s Theorem

Let {Xn} and {Yn} be two sequences of random variables. Suppose Xn converges in
distribution to a random variable X, and Yn converges in probability to a constant c:

Xn
d−→ X and Yn

p−→ c

Then the following hold:

• Sum: Xn + Yn
d−→ X + c

• Product: XnYn
d−→ cX

• Quotient (if c ̸= 0): Xn
Yn

d−→ X
c

Finally, we introduce objects called (stochastic) orders of magnitude, which can be useful
in some applications.

Definition 1.11: Big and small oh

Consider (Xn) and ( fn) two sequences of real numbers.

1. We say that Xn = O( fn) if
∣∣Xn

fn

∣∣→ c < ∞ (i.e.
∣∣Xn

fn

∣∣ is bounded for all sufficiently
large n)

2. We say that Xn = o( fn) if
∣∣Xn

fn

∣∣→ 0 as n → ∞

Notice that Xn = O(1) ⇔ Xn is bounded uniformly in n, that is there exists M < ∞ such
that |Xn| ≤ M for all n. Naturally, Xn = o(1) ⇔ Xn → 0 as n → ∞

Definition 1.12: Big and small oh-P

Consider (Xn) be a sequence of random variable and ( fn) a sequence of real numbers.

1. We say that Xn = Op( fn) if ∀ε > 0, ∃c ≥ 0 and n0 ∈ N such that ∀n ≥ n0,

P(|Xn| > c fn) < ε

2. We say that Xn = op( fn) if Xn
fn

p−→ 0

Notice that the definition of Op(·) is equivalent to the random variable being bounded in
probability. If we have Xn = Op(1), we can equivalently write that for any ε > 0 there
exists a constant c < ∞ such that

lim sup
n→∞

P(|Xn| > c) < ε
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Finally, Xn = op(1) is equivalent to Xn
p−→ 0 as n → ∞.

1.6.2 Consistency of the least squares estimator

Define the OLS estimator β̂ and the estimation error:

β̂ = β +

(
X′X

n

)−1 (X′ε

n

)
To show that β̂

p−→ β (Consistency), we need to show that
(

X′X
n

) p−→ Q, where Q is finite

and invertible, and
(

X′ε
n

) p−→ 0.

First, consider the case where the data {(xi, εi)}n
i=1 is iid. Additionally, we assume contem-

poraneous exogeneity: E(xiεi) = 0, and we impose some moment conditions: E(xix′i) < ∞
and E|xiεi| < ∞. Notice that E(xix′i) is invertible by assumption ii) (full rank). Therefore,
by Khinchine’s WLLN, we obtain that

1
n

n

∑
i=1

xix′i
p−→ E(xix′i) ≡ Q and

1
n

n

∑
i=1

xiεi
p−→ E(xiεi) = 0

Note that Slutsky’s Theorem guarantees(
1
n

n

∑
i=1

xix′i

)−1
p−→ Q−1

Therefore, by Continuous Mapping Theorem, we obtain

β̂
p−→ β + E(xix′i)

−1E(xiεi) = β + Op(1) · op(1) = β

Notice that the assumptions imposed here are stronger than what we need to establish
consistency. Indeed, only assuming that 1

n ∑n
i=1 xix′i

p−→ Q and imposing weak exogeneity
is enough to guarantee consistency.

Weak exogeneity (or contemporaneous uncorrelation), written as E(xiϵi) = 0, is the neces-
sary population moment condition required to ensure OLS consistency. Strict exogeneity,
written as E(εi|X) = 0 is a much stronger assumption, requiring the error term to be
uncorrelated with all regressors in the sample, and is the condition needed to guarantee
OLS unbiasedness. Since Strict Exogeneity implies Mean Independence (E(εi|xi) = 0), and
Mean Independence in turn implies Weak Exogeneity via the Law of Iterated Expectations2,
the required condition for consistency is nested within the condition for unbiasedness,
first stated in the Gauss-Markov Assumptions.

2E(xiεi) = E(E(xiεi|xi)) = E(xiE(εi|xi)) = 0 if E(εi|xi) = 0.
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1.6.3 Asymptotic Normality of the least squares estimator

We are interested in understanding the behavior of
√

n(β̂ − β). We can rewrite the sample
counterpart of this object as follows

√
n(β̂ − β) =

(
1
n

n

∑
i=1

xix′i

)−1(
1√
n

n

∑
i=1

xiεi

)
Consider the set of assumptions we imposed for consistency, where naturally, using WLLN
and Slutsky’s Theorem, we have(

1
n

n

∑
i=1

xix′i

)−1
p−→ Q−1

Now, we need to add two additional moment assumptions: E(∥xi∥4) < ∞ and E(ε4
i ) <

∞.3 We do not specify any structure on the errors yet. Under these assumptions, by
Lindeberg-Lévy’s CLT4, we have that

1√
n

n

∑
i=1

xiεi
d−→ N (0, Ω∗), where Ω∗ = E(ε2

i xix′i)

By CMT, we get that
√

n(β̂ − β)
d−→ Q−1N (0, Ω∗) = N (0, Q−1Ω∗Q−1)

Now, suppose that we impose spherical errors. We can write the following, using LIE in
the first equality

V(xiεi) = E (V(xiεi|X)) = E
(
xix′iV(εi|X)

)
= σ2E(xix′i) = σ2Q

Therefore, we have that
√

n(β̂ − β)
d−→ N (0, σ2Q−1QQ−1) = N (0, σ2Q−1)

The
√

n normalization is used because it is the unique scaling factor that keeps the dis-
tribution of the estimator error "alive" for asymptotic analysis. The variance of the OLS
estimator, V(β̂), is known to decrease at the rate of 1

n as the sample size n increases (e.g.,
in the simple case, V(β̂) ≈ σ2

n·V(Xi)
). Because the variance collapses to zero at rate n, the

standard deviation collapses at rate
√

n; consequently, multiplying the estimation error
(β̂ − β) by

√
n exactly counteracts this collapse, yielding a distribution that converges to a

non-degenerate Normal distribution.

1.7 Quick detour on intuition & collinearity

3These two assumptions are imposed to have a finite variance. Indeed, using Cauchy-Schwarz Inequality,

it is easy to show that E(|εixi|)2 ≤
√

E(∥xi∥4)
√

E(ε4
i ) < ∞

4Note that Lindeberg-Lévy’s CLT applies to the term 1√
n ∑ xiεi when the data is iid. We use the general

notation Ω here, which is applicable even under heteroskedasticity (provided iid still holds). We will discuss
later the Lindeberg-Feller condition for non-iid cases.
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Remark 1.1: Some additional intuition on the variance

Consider the following expression for the variance

V(β̂) ≈ σ2

n · V(Xi)

This expression makes it clear why we want a lot of variation in our independent
variables. Since V(β̂) ∝ 1/V(Xi), the higher V(Xi), the lower the variance of the
estimator.

This remark introduces the concept of multicollinearity, which is generally written as
rank(X) < k, where k is the number of regressors. Note that this is saying that at least
some columns of X are linearly dependent. Formally, this implies that X′X is not invertible,
and therefore the OLS estimates cannot be computed. A typical example is to consider a
simple regression of wage on age, schooling and experience. Since experience is a combi-
nation of age and years of schooling, we have collinearity, and can’t run OLS.

More formally, the uniqueness of the OLS solution and the invertibility of X′X are directly
tied to the rank of X. The rank of an n × K matrix X, denoted rank(X), is the number
of linearly independent columns (or rows) it contains. The condition for a unique OLS
solution is that X must be full column rank, meaning rank(X) = K. If rank(X) < K, the
columns of X are linearly dependent (perfect multicollinearity), which means the column
space R(X) has a dimension less than K, and consequently, the K × K matrix X′X is
singular (non-invertible) according to Proposition 1.3. Without an invertible X′X, the OLS
formula β̂ = (X′X)−1X′y cannot be computed, and the fitted vector ŷ would be defined
by a non-unique set of coefficients β̂.

1.8 Function of Parameters

In most applications, a researcher is interested in a specific transformation of the coefficient
vector β5. For example, one may be interested in a single coefficient β j, or a ratio β j/βl.
More generally, we can write the parameter of interest θ as a function of the coefficients:
θ = r(β) for some function r : Rk → Rq with k ≥ q. The estimate of θ is therefore

θ̂ = r(β̂)

Now, suppose that the conditions for consistency hold, r(·) is continuously differentiable
in a neighborhood of (the true) β and R := ∂r(β)′

∂β has rank q. We now introduce the Delta
method. In this context, it basically says that if the transformation is smooth enough, we
can show θ̂ is asymptotically normal.

5Note that the next two parts are not directly part of the first year course at Bocconi, but are in my opinion
very important to build towards hypothesis testing.
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Theorem 1.10: Delta Method

Let µ ∈ Rk and g : Rk → RJ . If
√

n(µ̂ − µ)
d−→ ξ, where g(u) is continuously

differentiable in a neighborhood of µ, then as n → ∞

√
n(g(µ̂)− g(µ)) d−→ G′ξ

where G(u) = ∂g(u)
∂u′ and G = G(µ).

In particular, if ξ ∼ N (0, V) then as n → ∞

√
n(g(µ̂)− g(µ)) d−→ N (0, GVG′)

In this context, we can write the following Taylor expansion

θ̂ = r(β̂) ≈ r(β) +
∂r(β)

∂β′

∣∣∣
β=β̃

(β̂ − β) where β̃ is on the line joining β and β̂

Rewriting this, and normalizing by
√

n, we get

√
n(r(β̂)− r(β)) ≈ ∂r(β)

∂β′

∣∣∣
β=β̃︸ ︷︷ ︸

p−→R

√
n(β̂ − β)

d−→ N (0, R′VR) where V = Q−1ΩQ−1

Notice that the key step relies on the fact that β̂
p−→ β, which implies β̃

p−→ β and since the
partial derivatives are continuous, the Jacobian converges in probability:

∂r(β)

∂β′

∣∣∣
β=β̃

p−→ ∂r(β)

∂β′

∣∣∣
β=β

≡ R

Once that is derived, we can estimate the asymptotic variance of θ̂ by R̂′V̂R̂ where we can

show that a simple estimate of V is consistent, and R̂ = ∂r(β̂)
∂β′ .

1.9 Asymptotic standard errors

If θ̂ is a scalar, the standard error of θ̂ is obtained as

s(θ̂) =

√
1
n

R̂′V̂R̂

A standard error is an estimator of the standard deviation of the sampling distribution of
an estimator. Intuitively, it measures the precision of the estimate, quantifying the typical
distance between your sample-based estimate θ̂ and the true population parameter θ. If V̂
is an estimator of the variance-covariance matrix of β̂, then standard errors are the square
rooots of the diagonal elements of the matrix:

s(β j) =

√
1
n

V̂jj
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1.10 On the way to hypothesis testing: object construction

In this last subsection, I will construct the objects which will then be useful to proceed with
hypothesis testing.

1.10.1 T-statistic

Again, suppose that θ̂ is a scalar. Based on the standard error s(θ̂), we can obtain the
standardized object called t-statistic or t-ratio

Tn(θ) =
θ̂ − θ

s(θ̂)

Now, by asymptotic distribution of θ̂, we can show that this statistic is asymptotically pivotal

Tn(θ) =
θ̂ − θ√
1
n R̂′V̂R̂

=

√
n(θ̂ − θ)√

R̂′V̂R̂
d−→ N (0, R′VR)√

R′VR
=

√
R′VR√
R′VR

N (0, 1) = N (0, 1)

Asymptotically pivotal means that as n → ∞, the statistic behaves predictably and does
not depend on the unknown θ. This must not be true in finite samples, but this property
simply says that the dependence on unkowns diminishes as n increases.

1.10.2 Confidence Intervals

One way to estimate the unknown parameter θ ∈ R is to find a point estimator θ̂. If one is
not interested in the precise value of θ, it may be reasonable to estimate θ by an interval
[Ln, Un] ⊂ R (called confidence interval) such that

P(θ ∈ [Ln, Un]) ≈ 1 − α for some α ∈ (0, 1)

The goal is to set the coverage probability equal to a pre-specified target such 95%, with
α = 0.05. Since we rely upon asymptotic approximation, here we consider the interval
[Ln, Un] such that

P(θ ∈ [Ln, Un]) → 1 − α, called the 100(1 − α)% asymptotic confidence interval

One common way to construct the asymptotic confidence interval of θ is to base it upon
the asymptotically pivotal object

Tn(θ) =
θ̂ − θ

s(θ̂)
d−→ N (0, 1)

By the asymptotic distribution, for a desired confidence level 1 − α, we have

P(−zα/2 ≤ Tn(θ) ≤ zα/2) → 1 − α

where zα/2 is the 100(1 − α/2) percentile of N (0, 1). This is intuitive: the object we con-
sider converges in distribution to a standard normal, so the probability of the statistic
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falling between −zα/2 and zα/2 approaches 1 − α as the sample size increases.

By isolating the true parameter θ, we get:

P
(
θ̂ − zα/2s(θ̂) ≤ θ ≤ θ̂ + zα/2s(θ̂)

)
→ 1 − α

Thus, the 100(1 − α)% asymptotic confidence interval of θ is:[
θ̂ − zα/2s(θ̂), θ̂ + zα/2s(θ̂)

]
Notice that in this context (frequentist), we treat the confidence interval as a function of
the data and hence random, while θ is fixed.

1.10.3 Wald Statistic

Now, consider the case where θ ∈ Rq. We want to find the asymptotically pivotal object.
Instead of the t-ratio, consider the quadratic form

√
n(θ̂ − θ)′A

√
n(θ̂ − θ)

If we set A = V̂−1
θ ≡ R̂′V̂R̂ we can derive the Wald statistic (asymptotically pivotal) using

the CMT

Wn(θ) =
√

n(θ̂ − θ)′V̂−1√n(θ̂ − θ) =
√

n(θ̂ − θ)′(R̂′V̂R̂)−1√n(θ̂ − θ)
d−→ χ2

q

The confidence region for vector θ is given by {θ : Wn(θ) ≤ χ2
q,α} where χ2

q,α is the
100(1 − α)% percentile of χ2

q.

We have now all the tools to move on to hypothesis testing. Yay!

2 Hypothesis Testing

2.1 Concepts

For parameter of interest θ = r(β), consider two-sided testing problem

H0 : θ = θ0 against H1 : θ ̸= θ0

where θ0 is a hypothetical value. H0 is called null hypothesis and H1 is called alternative
hypothesis. In hypothesis testing, we assume that there is a true but unknown value of the
parameter of interest θ, and this value either satisfies H0 or does not. The goal is therefore
to assess whether or not H0 is true by asking if H0 is consistent with the observed data.
The question is: Are the true coefficients zero? To answer this question the testing method
asks the question: Are the observed estimates compatible with the hypothesis, in the sense
that the deviation from the hypothesis can be reasonably explained by stochastic variation?
Or are the observed estimates incompatible with the hypothesis, in the sense that that the
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observed estimates would be highly unlikely if the hypothesis were true (Hansen, 2022)?

Let us consider a test in the form of{
Accept H0 if Tn ≤ c
Reject H0 if Tn > c

where Tn is test the statistic and c the critical value.

In testing, we have two kinds of errors:

Accept Reject
H0 true Correct Type I
H1 true Type II Correct

Type I error probability can we written as

P(Reject|H0 true) = P(Tn > c|θ = θ0)

and represents false positives, e.g. an innocent person is convicted. Type II error probability
can be written as

P(Accept|H1 true) = P(Tn ≤ c|θ ̸= θ0)

and represents false negative, e.g. a criminal is not convicted.

2.1.1 Optimality and The Neyman-Pearson Lemma

The primary goal in constructing a test is to manage the trade-off between the two error
types. In classical testing, we choose to control the Type I error probability (the size of the
test) at a fixed maximum level, α. We can choose c to satisfy

P(Type I Error) → α

Given this fixed size, we then seek to find a test that minimizes the Type II error probability,
which is equivalent to maximizing the power function, defined as π(θ) = P(Reject H0|H1 true).

The Neyman-Pearson (NP) Lemma provides the theoretical foundation for this approach,
stating that the most powerful test for a simple null hypothesis against a simple alternative
is based on the Likelihood Ratio (LR). This establishes the LR test as the theoretical bench-
mark for test optimality, and all other tests, such as the Wald and LM tests, are evaluated
by their asymptotic equivalence to the LR test. More on the trinity of hypothesis testing
later.

The UMP test can be written as follows φ(x) = 1{LR < k} for some k ∈ (0, 1) such that
the probability of falsely rejecting the null is α. The likelihood ration can be written as

Λ =
f0(x)
f1(x)

=
L(x1, ..., xn, θ0)

L(x1, ..., xn, θ1)
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2.2 Linear hypotheses and joint significance

2.2.1 T-test

Based on the t-ratio constructed above, we can test H0 : θ = θ0, for which it holds that
Tn(θ)

d−→ N (0, 1). This implies that P(|Tn(θ0)| > zα/2|H0) → α. Therefore, the asymptotic
size α test is

Accept H0 if |Tn(θ0)| ≤ zα/2 and Reject H0 if |Tn(θ0)| > zα/2

Example 2.1: Single Linear Hypothesis

For a single linear hypothesis H0 : c′β = γ, the test statistic is written as the T-test:

T =
c′ β̂ − γ

SE(c′ β̂)

For the exact-sample test under the classical assumptions (spherical errors and normal
errors ε ∼ N (0, σ2 I)), the statistic follows a t-distribution:a

T ∼ tn−k under H0

The corresponding rejection rule for the exact-sample two-sided test is to Reject H0 if
|T| > tn−k,α/2.

aRecall that as the degrees of freedom increases, the t-distributions converge to the standard normal

In the exact-sample T-test, the test statistic follows the t-distribution with n − k degrees
of freedom, where n is the sample size and k is the total number of parameters estimated
in the unrestricted model (including the intercept). The quantity n − k represents the
number of observations available to estimate the error variance after accounting for the k
parameters that have been fit. It reflects the number of independent data points available
for estimating the residual variation.

2.2.2 F-test

A joint linear hypothesis involves testing J restrictions on the parameter vector β simul-
taneously. We want to test H0 : Rβ = c against H1 : Rβ ̸= c, where R is a known J × K
matrix of constants with full rank, where J is the number of restrictions, and c is a J × 1
vector of known constants.

Example 2.2: Joint significance testing

Testing H0 : β2 = 1, β3 = −1 simultaneously for a model with K = 4 parameters:

yi = β1 + β2xi2 + β3xi3 + β4xi4 + εi
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This is subject to H0 : β2 = 1, β3 = −1, which implies Rβ = c:

R =

(
0 1 0 0
0 0 1 0

)
, c =

(
1
−1

)
, β =


β1
β2
β3
β4


The test for joint hypotheses is based on verifying that the estimated restrictions Rβ̂ − c
are close to zero. This test utlimately uses the quadratic form we derived previously to
obtain the following test statistic:

W = n(Rβ̂ − c)′[RVR′]−1(Rβ̂ − c) d−→ χ2
J

Notice that this can be done when σ2 is known. If σ2 is unknown, an alternative, exact-
sample statistic is the F-test, which follows the FJ,n−k distribution under H0 (under classical
assumptions). As before, the F-distribution converges to a χ2 distribution.

The most intuitive way to understand the F-test is by viewing it as a comparison between
two models: the unrestricted model (OLS) and the restricted model (RLS) where the
constraints Rβ = c are imposed.

F =
(RSSR − RSSUR)/J

RSSUR/(n − k)
∼ FJ,n−k under H0

The acceptance rule is to Reject H0 if F ≥ F(J,n−k),α.

2.2.3 Restricted Least Squares Derivation

The RLS estimator β̃ is obtained by minimizing the sum of squared residuals subject to the
linear constraints Rβ = c, using the Lagrangian method:

Q(β, λ) = (y − Xβ)′(y − Xβ)− 2λ′(Rβ − c)

The first-order conditions (FOCs) are:

∂Q
∂β

∣∣∣
β̃,λ̃

= 0 =⇒ −2X′y + 2(X′X)β̃ − 2R′λ̃ = 0

∂Q
∂λ

∣∣∣
β̃,λ̃

= 0 =⇒ Rβ̃ = c

Solving the system (see appendix) yields the RLS estimator β̃:

β̃ = β̂ + (X′X)−1R′(R(X′X)−1R′)−1(c − Rβ̂)

If the null hypothesis H0 : Rβ = c is true, the RLS estimator β̃ is BLUE and is more efficient
than the unrestricted OLS estimator β̂.

Var(β̂)− Var(β̃) = σ2(X′X)−1R′(R(X′X)−1R′)−1R(X′X)−1 ≥ 0
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The implication is the an OLS with a restriction that reflects the true values is always more
efficient than an unrestricted OLS.

Example 2.3: Significance of a Regression

A question of interest can be to know whether a regression as a whole is significant

yi = β1 + β2xi2 + ... + βkxik + εi

The test is a joint test of the hypothesis that all coefficients except the constant are zero

H0 : β2 = ... = βk = 0

Notice that the number of restrictions here is k − 1, and the degrees of freedom of the
unrestricted model n − k. We can define RSSR as the restricted RSS, regress y = β1 + ε
(under H0), and use the residuals to compute ε̃′R ε̃R = TSS. The F-test is therefore
computed as

F =
(RSSR − RSSUR)/k − 1

RSSUR/(n − k)
=

R2/k − 1
(1 − R2)/n − k

∼ Fk−1,n−k

2.3 The Trinity of Testing

Before introducing the full Trinity of tests, we first need to establish the properties of the
Maximum Likelihood Estimator (MLE), which forms the basis for the LR and LM statistics.

2.3.1 The ML Estimator

Let f (yi | θ) be the probability density function (or probability mass function) of the data,
where θ is the vector of parameters. As introduced above, the Likelihood Function for n
independent observations is:

L(θ) =
n

∏
i=1

f (yi | θ)

The Log-Likelihood Function is:

L(θ) =
n

∑
i=1

ln f (yi | θ)

The Maximum Likelihood Estimator (MLE), denoted θ̂ML, is the value of θ that maximizes
L(θ). It is found by solving the first-order condition:

∂L(θ)
∂θ

∣∣∣
θ̂ML

= 0
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Definition 2.1: Score

The vector of first derivatives of the log-likelihood function is called the Score Func-
tion:

S(θ) =
∂L(θ)

∂θ

Under regularity conditions, the expected value of the score function evaluated at the
true parameter is zero: E[S(θ)] = 0.

Definition 2.2: Hessian

The matrix of second derivatives of the log-likelihood function is the Hessian Matrix:

H(θ) =
∂2L(θ)
∂θ∂θ′

Definition 2.3: Information Matrix

The Information Matrix is defined as the negative expected value of the Hessian:

I(θ) = −E[H(θ)] = −E

[
∂2L(θ)
∂θ∂θ′

]

Under regularity conditions6, the MLE is consistent, asymptotically efficient, and asymp-
totically normally distributed:

√
n(θ̂ML − θ)

d−→ N (0, V)

The asymptotic covariance matrix V is the inverse of the Information Matrix:

V = I(θ)−1

Remark 2.1: The Fisher Information Identity

The Information Matrix can also be written as the expected outer product of the score
function:

I(θ) = E[S(θ)S(θ)′]

In practice, we use the estimated (asymptotic) variance ÂVar(θ̂ML). This can be obtained
in two common ways by using different estimators for the Information Matrix I(θ):

• Using the outer product of the scores (this estimates the Information Matrix using
the empirical version of the Fisher Identity)

ÂVar(θ̂ML) =

[
n

∑
i=1

Si(θ̂ML)Si(θ̂ML)
′
]−1

6More on this when we introduce extremum estimators.
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• Using the negative of the Hessian (this estimates the Information Matrix using the
observed (actual) Hessian from the maximum point):

ÂVar(θ̂ML) = [−H(θ̂ML)]
−1

With that, we can turn to the tests.

2.3.2 Wald Test

The Wald test measures the distance between the unrestricted estimate θ̂ and the value
imposed by the null hypothesis. Consider H0 : r(θ) = r(θ0).

W = n ·
(
r(θ̂)− r(θ0)

)′ [
R(θ̂)′V̂(θ)R(θ̂)

]−1 (
r(θ̂)− r(θ0)

) d−→ χ2
J

A problem with the Wald test is that it is not invariant to the formulation of the restrictions.
For instance, if we test H0 : β1β2 = 1 and H′

0 : β1 = 1/β2, the Wald test provides different
answers in finite sample, even if the two are asymptotically equivalent. Additionally, it
has a tendency to over-reject.

To build additional intuition, consider the univariate case

Wuniv =
(θ̂ − θ0)

2

Var(θ̂)
∼H0 χ2

1

The numerator (θ̂ − θ0)
2 measures the squared difference between our best estimate, θ̂, and

the value hypothesized by the null, θ0. Higher deviation means stronger evidence against
H0. The denominator V̂ar(θ̂) measure precision. If we have a low variance it indicates a
highly precise estimate (low V̂ar(θ̂)). A small deviation in the numerator is then magnified
by the small denominator, resulting in a large Wuniv. We are confident in θ̂, so we strongly
reject H0. On the other hand, a flat likelihood function indicates an imprecise estimate
(high V̂ar(θ̂)). The denominator is large, making it harder to reject H0. The data does not
provide enough information to reliably distinguish θ̂ from θ0.

2.3.3 The Lagrange Multiplier or Score Test

The LM test measures how close the score function S(θ) is to zero when evaluated at the
restricted estimate θ̃R. If H0 is true, θ̃R should be close to the true parameter, and the score
should be near zero. It relies only on the restricted estimation.

LM = S(θ̃R)
′I(θ̃R)

−1S(θ̃R)
d−→ χ2

J

Example 2.4: LM

Consider the linear regression model under normality:

yi = β0 + β1xi1 + β2xi2 + εi
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We want to test the restriction H0 : β1 = 1. The restricted model is:

yi − xi1 = β0 + β2xi2 + ei

The MLE estimates for the restricted model are β̃0, β̃2 and β̃1 = 1. Since the unre-
stricted likelihood whose gradient needs to be evaluated at the constraint estimates is
given by:

L = −n
2

log(2π)− n
2

log(σ2)− 1
2σ2

n

∑
i=1

(yi − β0 − β1xi1 − β2xi2)
2

Under the classical linear regression with normality, we want to verify that the Score
(gradient) is close to zero at the restricted estimates β̃. The derivatives of the log-
likelihood are:

∂L
∂β0

∣∣∣
β̃,σ̃2

=
1
σ̃2 ∑ ẽi ≈ 0

∂L
∂β1

∣∣∣
β̃,σ̃2

=
1
σ̃2 ∑ ẽixi1 ≈ 0

∂L
∂β2

∣∣∣
β̃,σ̃2

=
1
σ̃2 ∑ ẽixi2 ≈ 0

The FOCs for β0, β2, σ2 are satisfied (they form the constraint optimisation). The LM
test focuses on the condition for the restricted parameter β1.

LM Test (Auxiliary Regression): The LM test is implemented by running an auxiliary
regression: first, regress the restricted residuals ẽi on all regressors xi1 and xi2. The LM
statistic is then related to the R2 of this auxiliary regression.

Intuition: If β1 ̸= 1 (i.e., H0 is false), the residuals from the restricted model ẽi will still
display correlation with the excluded regressor xi1. Hence, the covariance between ẽi
and xi1 (which is the score component for β1) will be high, resulting in a high R2 and
leading to rejection of H0.

2.3.4 The Likelihood Ratio Test

We introduce the following notation. Let Qn(θ) := L(θ), and Q(θ) = E[ln f (Yi, Xi | θ)].
The LR test compares the maximum log-likelihood under the unrestricted model (θ̂) to the
maximum log-likelihood under the restricted model (θ̃).

LR = 2
[
Qn(θ̂)− Qn(θ̃)

] d−→ χ2
J
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Example 2.5: LR example

Suppose we want to test H0 : β1 = 1. We need to run our MLE imposing β1 = 1,
and then run it without any restriction, obtaining Qn(β̃ and Qn(β̂) respectively. We
therefore obtain

LR = 2
(
Qn(β̂)− Qn(β̃

) d−→ χ2
1

Figure 2.3.4 shows a graphical represnetation of the 3 tests.

θ

Q(θ)

θ̂ θ0

Q(θ̂)

Q(θ0)

Score TestLR Test

Wald Test

Figure 2: The trinity of hypothesis testing

3 Generalized Linear Regression

The whole point of this section is to relax assumption iv). That is, we do not assume
spherical errors anymore. Indeed, we now consider a case where V(ε | X) = Ω ̸= σ2 In

7,
which we denote assumption iv)’. This can different shape. The most common one would
be to think about heteroskedasticity, that is a case where

V(εi) = σ2
i =⇒ Ω =

σ2
1 . . . 0
... . . . ...
0 . . . σ2

n


Another interesting example is one with serial correlation, for instance where εt follows
an AR(1) process:

7For consistency in the Generalized Least Squares (GLS) derivation, we define the full n × n covariance
matrix as Ω ≡ V(ε | X), which therefore absorbs the common scalar σ2 from the initial assumption (iv).
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εt = ρεt−1 + vt, with |ρ| < 1, vt ∼ iid(0, σ2)

=⇒ Ω =
σ2

1 − ρ2


1 ρ ρ2 . . . ρT−1

ρ 1 ρ . . . ρT−2

ρ2 ρ 1 . . . ρT−3

...
...

... . . . ...
ρT−1 ρT−2 ρT−3 . . . 1


3.1 Finite-Sample Properties

Consider the Gauss-Markov assumptions i) to iii), with assumption iv)’. It is easy to show
that the OLS estimtor is still unbiased, since we rely on exogeneity assumption iii) to show
unbiasedness. The conditional variance can be computed as follows

V(β̂|X) = E
[
(β̂ − E[β̂|X](β̂ − E[β̂|X])′ | X

]
= E

[
(β + (X′X)−1X′ε − β)((β + (X′X)−1X′ε − β)])′ | X

]
= E

[
(X′X)−1X′εε′X(X′X)−1

]
= (X′X)−1X′ΩX(X′X)−1

OLS is therefore not BLUE anymore, since it is not efficient. We discuss later how to fix
this.

3.2 Asymptotic Properties

First, for consistency, recall that we rely on a combination of a WLLN, Slutsky’s Theorem,
and assumption iii), we obtain that β̂

p−→ β. Since {xiεi} is no longer iid, we need to use a
stronger version of the WLLN. Notably, we are lacking the identically distributed part.
Based on Theorem 1.5, we have a suitable LLN that we can use for such cases, since we
do not rely on any sort of identically distributed assumption. Notice that conditions of
Theorem 1.5 are actually much stronger than what we need (see Appendix A.1).

Now, for asymptotic normality in presence of non-spherical errors, it is not possible to
use Lindeberg-Levy’s CLT (Theorem 1.6). Instead, we must use Lindeberg-Feller’s CLT
(Theorem 1.7). Using this CLT, provided that the Lindeberg condition holds, and following
derivations done in the general case above, we get

√
n(β̂ − β)

d−→ Q−1N (0, Ω∗) = N (0, Q−1Ω∗Q−1)

Below is an elegant example of when Lindeberg-Feller’s CLT can be applied.

Consider
yi = βxi + ui, i = 1, . . . , n,
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where E(u2
i ) = σ2. Suppose the data are grouped into J unequal categories:

Y1 =
1
n1

n1

∑
i=1

yi, X1 =
1
n1

n1

∑
i=1

xi, n =
J

∑
j=1

nj.

Estimate β by the no-intercept OLS regression of Yj on Xj:

β̂ =

(
J

∑
j=1

X2
j

)−1 J

∑
j=1

XjYj.

We want to derive the limiting distribution of β̂ and construct a test of the null hypothesis
that β = 0 based on the grouped data.

First, let us write the model for a specific group Gj:

Yj = βXj + Uj where Uj =
1
nj

∑
i∈Gj

ui

We need to put assumption on our model. A standard assumption is that ui ∼ N (0, σ2)
and is independent and identically distributed (iid). Based on this assumption, notice that
for arbitrary group Gj, we can compute the expectation

E
(
Uj
)
= E

 1
nj

∑
i∈Gj

ui

 =
1
nj

∑
i∈Gj

E(ui) = 0

and the variance

V(Uj) = V

 1
nj

∑
i∈Gj

ui

 =
1
n2

j
∑

i∈Gj

∑
k∈Gj

Cov(uiuk)

=
1
n2

j

∑
i∈Gj

V(ui) + ∑
i∈Gj

∑
k ̸=i,k∈Gj

Cov(ui, uk)

 =
σ2

nj
≡ σ2

j

The last equality comes from the fact that ∀i ̸= k, Cov(ui, uk) = 0.

We can re-write β̂ as follows:

β̂ = β +

(
J

∑
j=1

X2
j

)−1 J

∑
j=1

XjUj

We are interested in the behavior of

√
J(β̂ − β) =

√
J

(
J

∑
j=1

X2
j

)−1 J

∑
j=1

XjUj =

1√
J ∑J

j=1 XjUj

1
J ∑J

j=1 X2
j
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The key fact to notice here is that the variance varies for each group Gj (i.e. heteroskedas-
ticity), which implies we can’t apply Lindeberg-Levy’s Central Limit Theorem, since this
theorem only works for iid data 8 Therefore, we need to use the Lindeberg-Feller CLT. I
take the definition from a previous course, since we do not have the formal definition in
this context.

We need to assume some Lindeberg Condition. This condition requires that the sum of
the extreme-value variances becomes negligible compared to the total variance as n → ∞.

In this context, we are interested in writing the Lindeberg condition to the sequence
Zj := XjUj, which is an independent but non-iid sequence of random variables. Notice
that by LIE,

E(Zj) = E[E(XjUj|Xj)] = E[XjE(Uj|Xj)] = 0

The variance can be computed as

V(Zj) = E(X2
j U2

j ) = E[X2
j E(U2

j |Xj)] = σ2
j X2

j ≡ σ̃2
j

We can now define
CJ :=

√
∑

j
σ̃2

j

We impose the following condition

lim
J→∞

maxj∈{1,...,J}(X2
j /nj)

∑j(X2
j /nj)

= 0

which is a sufficient condition for

lim
J→∞

max
j∈{1,...,J}

σ̃2
j

C2
J
= 0

Now, assume the Lindeberg Condition holds, that is, assume, for any ε > 0:

lim
J→∞

1
C2

J

J

∑
j=1

E
[

Z2
j 1{|Zj| ≥ εCJ}

]
= 0

We can finally apply Lindeberg-Feller’s Theorem:

∑J
j=1 Zj√
∑j σ̃2

j

=
∑J

j=1 XjUj

CJ

d−→ N (0, 1)

8We cannot use the classical i.i.d. CLT because V(XjUj) varies with j through nj. As J grows, the collection

{XjUj}J
j=1 forms a triangular array of independent but non-identically distributed random variables, so a

Lindeberg–Feller CLT is required.
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We can rewrite our object of interest as

1√
J

J

∑
j=1

XjUj
CJ√

J
·

∑J
j=1 XjUj

CJ

We analyze the limit of
(

CJ√
J

)2
since it represents the asymptotic variance of the numerator

in the estimator:

lim
J→∞

(
CJ√

J

)2

= lim
J→∞

C2
J

J
= lim

J→∞

1
J

J

∑
j=1

σ2X2
j

nj
:= σ2Ω

By Slutsky’s Theorem, we have that

1√
J

J

∑
j=1

XjUj
d−→ N (0, σ2Ω)

Now, assume that

1
J

J

∑
j=1

X2
j

p−→ Q =⇒
(

1
J

J

∑
j=1

X2
j

)−1
p−→ Q−1 by Continuous Mapping Theorem

We can therefore conclude that by Linderberg-Feller CLT and Slutsky’s Theorem,√
J(β̂ − β)

d−→ N (0,
σ2Ω
Q2 )

Finally, we can perform the following T-test:

T =
β̂√√√√√σ2

(
∑J

j=1

X2
j

nj

)
(

∑J
j=1 X2

j

)2

Notice that under H0 : β = 0, T d−→ N (0, 1)

If σ2 is unknown, we can use a standard method to estimate it.

3.3 Generalized Least Squares (GLS)

3.3.1 Theoretical GLS

The Generalized Least Squares (GLS) allows to adjust the linear regression model for it to
satisfy the Gauss-Markov Conditions. The resulting OLS estimator equals the estimator
that would minimize the generalized sum of squares

S(β) = (y − Xβ)′Ω−1(y − Xβ) =⇒ β̂GLS = (X′Ω−1X)−1X′Ω−1y
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The original model, y = Xβ + ε, has non-spherical errors, meaning V(ε | X) = Ω (where
Ω is an n × n matrix, and we are using your new, consistent notation). This violates the
standard Gauss-Markov assumption (spherical errors), making OLS inefficient.

The solution is to premultiply the entire model by an invertible n × n matrix R such that:

R′R = Ω−1

The transformed model is:
Ry = RXβ + Rε

y∗ = X∗β + ε∗

The errors in the new model, ε∗ = Rε, now satisfy the spherical errors assumption, which
is the whole point of the transformation:

V(ε∗ | X) = E(ε∗ε∗′ | X) = E(Rεε′R′ | X)

= RE(εε′ | X)R′ = RΩR′

Since R′R = Ω−1, it follows that Ω = (R′R)−1 = R−1(R′)−1. Substituting this back:

RΩR′ = R[R−1(R′)−1]R′ = (RR−1)[(R′)−1R′] = In In = In

The transformed error term, ε∗, now has a variance proportional to the identity matrix
(In), meaning it is spherical. OLS applied to the transformed model (y∗ regressed on X∗) is
the Best Linear Unbiased Estimator (BLUE).In fact, if you apply OLS to the transformed
model (X∗′X∗)−1X∗′y∗, you will find it simplifies directly to the GLS formula:

β̂GLS = (X′Ω−1X)−1X′Ω−1y

Theorem 3.1: Aitken Theorem

Under assumptions i) to iv), the GLS estimator β̂GLS is efficient relative to all other
unbiased estimators of β. This is a consequence of the transformation.

Assuming suitable regularity conditions9, the GLS estimator is consistent:

β̂GLS − β =

(
X′Ω−1X

n

)−1 X′Ω−1ε

n
p−→ 0

The asymptotic normality is given by:

√
n(β̂GLS − β)

d−→ N
(

0, D−1
Ω−1

)
9On top of the usual exogeneity and moment conditions, we need to assume the n × n covariance

matrix Ω must be positive definite, ensuring Ω−1 exists and is positive definite. This is necessary for the
transformation R′R = Ω−1. Additionally, the limit matrix DΩ−1 = plim X′Ω−1X

n must be finite and invertible
(positive definite). This ensures the asymptotic variance is well-defined and finite.
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where the K × K matrix DΩ−1 is the probability limit of the normalized X′Ω−1X term:

DΩ−1 = plim
X′Ω−1X

n
> 0

Note: The matrix DΩ−1 here is analogous to the Q matrix in the spherical OLS case,
representing the asymptotic precision of the transformed data. Unlike Ω∗ in the OLS
sandwich, DΩ−1 requires no "sandwiching" because the GLS transformation has already
ensured efficiency.

3.3.2 Feasible GLS

For all the results above, we need to assume Ω is known. The feasible version of GLS
(FGLS) is a version where Ω is replaced by its estimator, Ω̂

β̂FGLS = (X′Ω̂−1X)−1X′Ω̂−1y

Typically, β̂FGLS is biased, but consistent and asymptotically normal and efficient. We
can write the following two sufficient conditions for GLS and FGLS to be asymptotically
equivalent

plim
X′(Ω̂−1 − Ω−1)X

n
= 0 and plim

X′(Ω̂−1 − Ω−1)ε√
n

= 0

Condition 1 ensures the denominator (or the non-stochastic part, X′Ω−1X
n ) of the FGLS

estimator converges to the same limit as the GLS estimator. Condition 2 ensures the
numerator (or the stochastic part, X′Ω−1ε√

n ) of the FGLS estimator has the same asymptotic
distribution as the GLS estimator. I prove the proposition below.

Proof. We want to show that

plim
1
N

X′(Ω̂−1 − Ω−1)X = 0 and plim
1√
N

X′(Ω̂−1 − Ω−1)u = 0.

=⇒
√

N(β̂GLS − β)−
√

N(β̂FGLS − β)
p−→ 0

Consider the following notation, which simplifies the algebra a lot:

QN :=
X′Ω−1X

N
Q̂N :=

X′Ω̂−1X
N

WN :=
X′Ω−1u√

N
ŴN :=

X′Ω̂−1u√
N

Therefore, we want to show that

Q−1
N WN − Q̂−1

N ŴN
p−→ 0

We can now add and subtract Q̂−1
N WN, which yields:

(Q−1
N WN − Q̂−1

N WN) + (Q̂−1
N WN − Q̂−1

N ŴN)
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We focus first on the first difference. By factoring and using the property of difference of
inverse matrices 10, we can rewrite it as

(Q−1
N − Q̂−1

N )WN =
[

Q−1
N (Q̂N − QN)Q̂−1

N

]
Wn

Now, by our hypothesis, we know that Q̂N − QN = op(1). Additionally, Assuming

plim
(

1
N X′Ω−1X

)
= Q, a finite non-singular matrix, it follows by the Continuous Map-

ping Theorem that plim(Q−1
N ) = Q−1, which implies Q−1

N = Op(1). We also need to show
that Q̂−1

N = Op(1). Notice that we know that plim(Q̂N − QN) = 0 and that plimQN = Q.
Therefore, we can rewrite

plimQ̂N = plim(Q̂N − QN + QN) = plim(Q̂N − QN) + plim(QN) = Q

By the same argument as before (CMT), this implies Q̂−1
N = Op(1). Finally, note that Wn =

Op(1) by central limit theorem. Notice that for any Zn = Op(1), An = op(1), Zn An = op(1),
we have that the first difference is therefore[

Q−1
N (Q̂N − QN)Q̂−1

N

]
Wn = Op(1)op(1)Op(1)Op(1) = op(1)

We can move on to the second difference, which we rewrite as follows:

(Q̂−1
N WN − Q̂−1

N ŴN) = Q̂−1
N (WN − ŴN)

We have shown Q̂−1
N = Op(1), so we focus on the term (WN − ŴN), which we rewrite as

(WN − ŴN) =
1√
N

X′(Ω−1 − Ω̂−1)u

We are given that plim 1√
N

X′(Ω̂−1 − Ω−1)u = 0. Notice that by continuity11 of the plim
operator, it follows that

plim(WN − ŴN) = plim
[
− 1√

N
X′(Ω̂−1 − Ω−1)u

]
= 0

Therefore, (WN − ŴN) = op(1), which implies Q̂−1
N (WN − ŴN) = Op(1)op(1) = op(1)

We have shown that

Q−1
N WN − Q̂−1

N Ŵn = (Q−1
N WN − Q̂−1

N WN)+ (Q̂−1
N WN − Q̂−1

N ŴN)ŴN = op(1)+ op(1) = op(1)

=⇒ Q−1
N WN − Q̂−1

N Ŵn
p−→ 0

10For any two invertible matrices A and B of the same dimension,

A−1 − B−1 = A−1(B − A)B−1.

This identity follows from adding and subtracting A−1BB−1 and is valid whenever both inverses exist.
11If Xn

p−→ X, then for any constant a, aXn
p−→ aX. This follows from the continuity of convergence in

probability (Continuous Mapping Theorem), and is often informally referred to as linearity of the probability
limit.
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Note that asymptotic efficiency of FGLS does not require the efficiency of the estimator of
θ. Only consistency of θ̂ is required to achieve full efficiency for the FGLS estimator.

3.3.3 Application: Heteroskedasticity

This is a problem often encountered in cross-sectional and panel models. In these studies,
we are interested in studying members of a population, say at a given point in time. We
can think about firms, industries, geographical units (e.g. counties, states) or individual
consumers. Members of such population may vary in many different characteristis (size,
productivity, demographic composition,...), which can imply that individuals/firms are
drawn from distributions with different variances: heteroskedasticity.

Let us define V(εi|Xi) = σ2
i := σ2ω2

i . The transformed model satisfying the GM condi-
tions12 is

yi

ωi
=

(
xi

ωi

)′
β +

εi

ωi

In this case, R is a diagonal matrix with 1
ωi

on the diagonal, and Ω is a diagonal matrix of
σ2ω2

i . The weighted least squares estimator is therefore given by

β̂WLS =

(
∑

i

xix′i
ω2

i

)−1

∑
i

yix′i
ω2

i

The idea is basically to reweight based on how noisy this observation is. If the observation
has a high variance (and therefore a high ω2

i ), the denominator increases so we put less
weight on this observation. We now introduce an example.

Example 3.1: Grouped-data Regression model

Rather than observing all individuals, we may observe only group averages (case in
many very large datasets, or anonymized datasets etc).
The true data generating process satisfies all Gauss-Markov assumptions (including
full independence):

yij = x′ijβ + εij j = 1, . . . , Mi, i = 1, . . . , n

where εij ∼ iid(0, σ2).
However, the estimable model is defined by the group means:

ȳi = x̄′i β + ε̄i

with ȳi = ∑Mi
j=1

yij
Mi

, x̄i = ∑Mi
j=1

xij
Mi

, and ε̄i = ∑Mi
j=1

εij
Mi

.

12It is easy to show that spherical errors hold in the transformed model: Var(ε∗ | X) = E(ε∗ε∗′ | X) =
1

ω2
i
E(εiε

′
i|xi) = σ2
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The estimable model exhibits heteroskedasticity, as the variance of the average error is:

V(ε̄i) = V

(
Mi

∑
j=1

εij

Mi

)
=

σ2

Mi

Therefore, the variance of the error term ε̄i is inversely proportional to the group size
Mi. Observations from larger groups (Mi large) are more precise (smaller variance)
than observations from smaller groups.
GLS is an OLS on the transformed model, where the transformation uses the inverse
square root of the variance, 1√

V(ε̄i)
=

√
Mi
σ . Since σ is constant across all observations,

the necessary weight ωi is
√

Mi.
The transformed model is: √

Miȳi =
√

Mi x̄′i β +
√

Mi ε̄i

or y∗i = x∗′i β + ε∗i

The transformed error ε∗i =
√

Mi ε̄i is now homoskedastic:

V(ε∗i ) = V(
√

Mi ε̄i) = MiV(ε̄i) = Mi
σ2

Mi
= σ2

Instead of using Weighted Least Squares (WLS), we can choose to use OLS, while only
adjusting the standard errors. This approach does not require us to specify the functional
form of the heteroskedasticity. The appropriate covariance matrix for the OLS estimator
when heteroskedasticity is present is given by the sandwich formula, derived from the
asymptotic variance:

V(β̂ | X) =
(
∑ xix′i

)−1
(
∑ σ2

i xix′i
) (

∑ xix′i
)−1

The estimator of this covariance matrix, known as the White (1980) estimator (or the
Heteroskedasticity-Consistent Covariance Matrix Estimator, HCCME), replaces the un-
known σ2

i with the squared OLS residuals ε̂2
i :

̂V(β̂ | X) =
(
∑ xix′i

)−1
(
∑ ε̂2

i xix′i
) (

∑ xix′i
)−1

This estimator is consistent because it relies on the condition that the difference between
the true normalized σ2

i and the estimated normalized ε̂2
i vanishes asymptotically:

plim
1
n ∑(σ2

i − ε̂2
i )xix′i = 0

Standard errors calculated as the square root of the diagonal elements of this matrix are
usually referred to as heteroskedasticity-consistent standard errors or simply White stan-
dard errors. In Stata, this is typically implemented using the ’vce(robust)’ option.
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Now, we introduce a theorem that provides necessary and sufficient conditions for equiva-
lence between OLS and GLS.

Theorem 3.2: Kruskal’s Theorem

Under assumptions i) to iii) and iv)’, OLS is efficient if and only if

• The column space of X, denoted R(X) (i.e. the space spanned by the K columns
of X), is spanned by K egeinvectors of the covariance matrix Ω

• The column space of the matrix product XΩ is that same as the column space of
X, that is R(XΩ) = R(X)

I find the second condition a bit more intuitive. R(XΩ) = R(X) means that applying the
covariance structure Ω to the explanatory variables X does not "move" them out of their
column space. The condition R(ΩX) = RX is the formal linear algebra requirement that
ensures this proportionality holds, meaning the weighting matrix Ω−1 does not change
the resulting projection (the coefficients β̂).

3.3.4 Heteroskedasticity Tests

We introduce two tests for heteroskedasticity. First, the Goldfeld-Quandt Test (1965). We
assume the heteroskedastic variance σ2 is monotonically related to one observable variable,
zi. It is then a simple F test where we separate observations into two groups after reordering
by zi, omitting r central observations to improve power. Under H0 (homoskedasticity):

F =
s2

1
s2

2
∼ Fm−k,m−k

where m = n−r
2 and s2

j = ε̂′ ε̂/(m − k).

The second test is the White Test. It Does not specify anything about the form of het-
eroskedasticity. We regress the squared residuals ϵ̂2 on a constant and all p unique first
moments, second moments, and cross-products of the original regressors. The test statistic
is based on the R2 from the auxiliary regression:

White Test = nR2 p−→ χ2
p

It is also possible to apply the trinity of hypothesis testing to this context (see Limodio’s
slides).

4 Identification and Instrumental Variables

In this section, we relax the assumption of conditional mean independence, that is assump-
tion iii). The asymptotic results derived in earlier section are all based on E(ε|X) = 0.13

13A weaker condition, contemporaneous uncorrelatedness, which is implied by conditional mean inde-
pendence, and written as E(xiεi) = 0 is sufficient to ensure the consistency of the OLS estimator.
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However, in most cases, our regression has an endogeneity problem, that is E(xiεi) ̸= 0.
Using our asymptotic results from above, by Khinchine’s WLLN, we obtain that

1
n

n

∑
i=1

xix′i
p−→ E(xix′i) ≡ Q and

1
n

n

∑
i=1

xiεi
p−→ E(xiεi) ̸= 0

Therefore, by Slutsky’s Theorem and CMT, we understand the OLS estimator is inconsistent

β
p−→ β + Q−1E(xiεi) ̸= β

There are different causes of endogeneity, which I detail below.

4.1 Cause of Endogeneity

4.1.1 Measurement error

The true (unobservable) model starts with conditional mean independence E(εi|x∗i ) = 0:

yi = x∗
′

i β + εi

We observe a measurement error ui such that xi = x∗i + ui, where E(ui) = 0. The key
assumptions are that the measurement error ui is independent of both the true regressor
x∗i and the equation error εi. These are strong assumptions, implying that the true value x∗i
reveals no information about the sign, size, or value of the measurement error ui.

The regression model we estimate uses the observed regressor xi and has a composite error
term vi:

yi = x′i β + vi

where vi = εi − u′
iβ.

By construction, the observed regressor xi and the new error vi are correlated:

E(xivi) = E[(x∗i + ui)(εi − u′
iβ)] ̸= 0

Specifically, E(xivi) = E(uivi) = −E(uiu′
i)β ̸= 0 because ui and vi are necessarily corre-

lated as both are functions of the measurement error ui.

Therefore, the OLS estimator β̂ of equation is in general inconsistent. The regressor xi
becomes endogenous when measured with error, and the resulting parameter estimates
will be biased, with the extent of this bias depending on the magnitude and pattern of the
error.

Example 4.1: Special case: bivariate regression

The linear model is yi = β0 + β1x∗i + ϵi with conditional mean independence
E(ϵi|x̃∗i ) = 0. The true regressor x̃∗i is unobserved, and we instead observe the
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error-ridden version x̃i = x̃∗i + ũi.

Suppose the measurement error ũi is independent of the true regressor x̃∗i and the
equation error ϵi, with E(ũi) = 0 and variance V(ũi) = σ2

ũ.

Asymptotic Properties of β̂1

The probability limit of the slope estimator β̂1 is:

plim β̂1 =
plim 1

n ∑(x̃i − ¯̃x)(yi − ȳ)
plim 1

n ∑(x̃i − ¯̃x)2
=

Cov(x̃i, yi)

V(x̃i)
= β1

V(x̃∗i )
V(x̃∗i ) + σ2

ũ

Since the term V(x̃∗i )
V(x̃∗i )+σ2

ũ
is less than 1, this is the typical case of "attenuation bias".

Therefore, β̂1 is inconsistent, and the amount of inconsistency is small when the "noise
to signal ratio" (σ2

ũ/V(x̃∗i )) is small.

Asymptotic Properties of β̂0

The intercept estimator β̂0 is also inconsistent:

plim β̂0 = plim ȳ − plim β̂1 plim ¯̃x = β0 + β1 plim ¯̃x∗ + plim ϵ̄ − plim(plim β̂1 plim ¯̃x)

plim β̂0 = β0 + β1 E(x̃∗)
V(x̃∗)

V(x̃∗) + σ2
ũ

(The formula in the source is missing a β1 term, assuming plim ϵ̄ = 0 and plim ū = 0).
Therefore, β̂0 is also inconsistent, unless E(x̃∗) = 0 or β1 = 0. The direction of
inconsistency depends on the sign of β1 and E(x̃∗).

In general, if only one regressor is measured with error, the estimator of its coefficient
is asymptotically shrunk to zero. If more variables are measured with error, then very
little can be said about the direction. Therefore, measurement error in more than one
explanatory variable gives inconsistent OLS, not only for the parameters associated with
the variables measured with error but for all parameters in general.

4.1.2 Simultaneity

Simultaneity arises when some of the independent variables are jointly determined with
the dependent variable.
Consider the following linear market model which uses a structural form representation
consisting of two equations:

• Demand equation: qd
t = αpt + Xd

t β + u1t

• Supply equation: qs
t = γpt + Xs

t δ + u2t
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Here, Xd
t and Xs

t are predetermined variables that capture exogenous shifts in supply
and demand, satisfying conditional mean independence. These are structural equations
derived from theory, each describing a particular aspect of the economy.
The market equilibrium condition, qd

t = qs
t = qt, ensures that price (pt) and quantity (qt)

are jointly determined, making them both endogenous variables.

Our concern is the estimation of these structural form equations. To see the endogeneity
problem, we rewrite the model in its reduced form by solving for pt and qt in terms of Xd

t ,
Xs

t , u1t, and u2t. The reduced form for price is:

pt =
1

α − γ

(
Xs

t δ − Xd
t β + u2t − u1t

)
Clearly, pt is correlated with both error terms u1t and u2t. Applying OLS to each structural
form equation separately will therefore give inconsistent parameter estimates. OLS applied
to the reduced form equations will provide consistent estimates of the reduced form
parameters, but this is a nonlinear relation to the structural form parameters of interest.

4.1.3 Omitted Variable Bias

Consider the true model, which is called the long regression

yi = x′1iβ1 + x′2iβ2 + ui, with E(ui|x1i, x2i) = 0

Suppose that we observe only x1i and yi, and therefore run the following short model,
omitting x2i:

yi = x′1iβ1 + εi, with εi = x′2iβ2 + ui

Now, if we consider

E(x1iεi) = E(x1i(x′2iβ2 + ui)) = β2E(x1ix′2i) ̸= 0

unless β2 = 0 or E(x1ix′2i) = 0. This implies that the estimator is not consistent in most
cases.

Now, consider the estimator of β1 written in matrix form:

β̂1 = (X′
1X1)

−1X′
1y = β1 + (X′

1X1)
−1X′

1ε = β1 + (X′
1X1)

−1X′
1X′

2 + (X′
1X1)

−1X′
1u

The last term vanishes by orthogonality condition, but the bias term (X′
1X1)

−1X′
1X′

2 re-
mains.

A well known example comes from Card, 2001, where he shows that unobserved ability
is an omitted variable when trying to evaluate the causal effect of education on earnings.
Individuals with higher ability are likely to be more sucessful on the labore market by
earning higher wages, and are likely to acquire more education. As such, unobserved
ability affects both education

(
E(x1ix′2i) ̸= 0

)
and earnings (β2 ̸= 0), and the regressor,

education, is correlated with the error term.
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4.2 Instrumental Variables and Identification

4.2.1 Set-up

In this section, I introduce one of the solutions to this endogeneity problem: Instrumental
Variables (IV).14 Consider the model

yi = x′i β + εi, where E(xiεi) ̸= 0

We first intoduce zi, which is an instrumental variable, for which we assume E(ziεi) = 0.
Notice that zi can overlap with xi, that is any xi that is exogenous is its own instru-
ment. Note that we must have most instruments than endogenous regressors, that is
dim(zi) ≥ dim(xi).

Now, consider what is called the reduced form15 relationship between xi and zi, found by
linear projection of xi on zi:

xi = z′iΠ + ui

If we impose the moment condition E(ziu′
i) = 0, we can recover Π:

E(ziu′
i) = E(zi(xi − z′iΠ)) = 0 =⇒

(
E(ziz′i)

)−1
E(zix′i)

In matrix notation, the reduced form can be written as

X(n×k) = Z(n×ℓ)Π(ℓ×k) + U(n×k)

and we can consistently Π by OLS:

Π̂ = (Z′Z)−1Z′X

If we plug this matrix reduced form equation into the original model, we get

y = Xβ + ε = (ZΠ + U)β + ε = Z(Πβ) + (Uβ + ε) ≡ Zλ + v

Note that λ is a valid projection coefficient since

E(zivi) = E(ziu′
i)β + E(ziεi) = 0

Therefore, the OLS from yi on zi yields a consistent estimator of λ:

λ̂ = (Z′Z)−1Z′y

We therefore have the following set of reduced form equations.

14I present things in a different order than Limodio’s slides, but all the content should be there.
15Note that this is not directly what comes to mind when mentioning reduced form: this is more a first

stage.

49



Definition 4.1: Reduced form equations

The reduced form equations in matrix notation are

1. y = Zλ + v

2. X = ZΠ + U

Understand that so far we have just established:

1. The direct relationship between Z and y (what we think about when talking about
reduced form usually): does the instrument have a direct impact on the outcome.
For instance, if we instrument education by distance to school, the reduced form is
the regression of income on distance to school directly.

2. The relation between X and Z, which is usually what we think about as first stage,
and is therefore related to the relevance condition, which will be introduced shortly.

The question is now to understand if we can recover the original parameter of interest β
from (λ, Π): this is an identification question, that is a population question.

4.2.2 Identification

We say that the parameters β are identified if β can be recovered from (λ, Π) through the
equation

λ(ℓ×1) = Π(ℓ×k)β(ℓ×1)

It is easy to see that we basically want Π to be invertible. From Proposition 1.3, this is
equivalent to Π being full column rank, that is having k linearly independent columns.
Therefore, a sufficient condition for identification of β is

rankΠ = k

To build intuition a bit more, recall that Π represents the "coefficients" of the impact of Z
on X. Full rank means that there is non-zero covariance between at least k elements of Z
and X. That is, at least k instruments should be correlated with the endogenous regressors
X: this is a relevance condition. We must now distinguish between different cases.

First, consider the just-identified case, where ℓ = k. The full rank condition guarantees
inveribility, so β is identified as

β̂ = Π̂−1λ̂

Indeed, plugging Π̂ and λ̂, we obtain

Π̂−1λ̂ =
[
(Z′Z)−1Z′X

]−1
(Z′Z)−1Z′y =

[
(Z′Z)−1Z′X

]−1
(Z′Z)−1Z′(Xβ + ε)

= β̂ +
[
(Z′Z)−1Z′X

]−1
(Z′Z)−1Z′ε = β̂ IV
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where the last equality comes by orthogonality of Z′ and ε.

In the just-identified case (ℓ = k), the IV estimator β̂IV = Π̂−1λ̂ formalizes the intuition of
"reduced form divided by first stage" that we usually think about when talking about IV.
The numerator, λ̂, is the estimated RF effect—the total impact of the instruments (Z) on
the outcome (y). The denominator, Π̂, is the estimated first-stage effect—the total impact
of the instruments (Z) on the endogenous regressor (X). Since the instruments affect the
outcome only through the endogenous regressor (the exclusion restriction), the structural
coefficient β represents the causal effect of X on y. Therefore, dividing the total effect (λ̂)
by the mechanism’s strength (Π̂) effectively isolates the specific causal effect of interest,
β̂IV, which is the change in y for a unit change in X induced only by the instrument. This
calculation essentially normalizes the total impact by the degree of "relevance" provided
by the instruments.

Now, consider the overidentified case, where ℓ > k. We basically treat the reduced form
relationship as having an error term e:

λ = Πβ + e

and then minimize the sum of squared residuals e′e with respect to β which yields a
solution of the form

Π′λ = (Π′Π)β

Again, the full rank condition ensures that (Π′Π) is invertible, which yields

β̂ = (Π′Π)−1Π′λ

Finally, in the underidentified case (ℓ < k), we do not have enough instrument to explain
the endogenous regressors. Note that what really matters again is the rank: if we do not
have full column rank in Π, some columns are linear combinations of each other (linear
dependence) implying that we "lose" relevant information to instrument the endogenous
variables.

4.3 Instrumental Variables and moments conditions

As we hinted at before, the instrumental variable estimator, β̂ IV is the method of moments
estimator that solves, the following moment condition (validity)

E(ziεi) = E(zi(yi − x′i β)) = 0

The sample analog of this moment condition is

1
n

n

∑
i=1

zi(yi − x′i β) = 0

Assuming the rank condition (relevance), which implies that ∑n
i=1 zix′i is invertible, the IV

estimator can be written as

β̂ IV =

(
n

∑
i=1

zix′i

)−1 n

∑
i=1

ziyi or β̂ IV = (Z′X)−1Z′y
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Using the matrix form, we can take the expectation and observe that

E(β̂ IV |Z, X) = β + (Z′X)−1Z′E(ε|Z, X)

But notice that the main reason we use an IV is because E(ε|X) ̸= 0, which implies
E(ε|Z, X) ̸= 0. Therefore, it is important to remember that the IV estimator is generally
biased in finite samples.

Moving to the asymptotics, as per usual, we can re-write

β̂ IV = β +

(
1
n

n

∑
i=1

zix′i

)−1
1
n

n

∑
i=1

ziε

We impose the following regularity conditions.

• {(xi, zi, εi)}n
i=1 is iid

• Validity: E(ziεi) = 0

• Relevance: E(zix′i) is invertible

• Moment existence condition: E(zix′i) < ∞ and E|ziεi| < ∞

Therefore, by Khinchine’s WLLN, we obtain that

1
n

n

∑
i=1

zix′i
p−→ E(zix′i) ≡ QIV and

1
n

n

∑
i=1

ziεi
p−→ E(ziεi) = 0

By Slutsky’s Theorem and Continuous Mapping Theorem, we obtain

β̂ IV
p−→ β + E(zix′i)

−1E(ziεi) = β + Op(1) · op(1) = β

This shows that under validity and relevance of the instrument, β̂ IV is consistent.
Moving to asymptotic normality, we impose two additional moment assumptions: E(∥zi∥4) <
∞ and E(ε4

i ) < ∞. Under these assumptions, by (Multivariate) Lindeberg-Lévy’s CLT, we
have that

1√
n

n

∑
i=1

xiεi
d−→ N (0, Ω∗

IV), where Ω∗
IV = E(ε2

i ziz′i)

By CMT, we get that

√
n(β̂ − β)

d−→ Q−1
IVN (0, Ω∗

IV) = N (0, Q−1
IV Ω∗

IVQ−1
IV )

We now consider the estimation of the asymptotic variance for the IV estimator, β̂ IV . A
consistent estimator of the asymptotic variance is given by the sandwich formula:

V̂ar(β̂ IV) =

(
1
n ∑ zix′i

)−1

· 1
n ∑(yi − x′i β̂ IV)

2ziz′i ·
(

1
n ∑ xiz′i

)−1
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where the middle term estimates the Ω∗
IV matrix. The residuals used are the IV residuals,

ε̂ IV = y − Xβ̂ IV .

If the errors are conditionally homoskedastic, meaning E(ε2
i |zi) = σ2 does not depend on

zi, then E(ε2
i ziz′i) = σ2E(ziz′i). In this case, the asymptotic variance simplifies to:

V̂ar(β̂ IV) = s2
IV

(
∑

1
n

zix′i

)−1

· 1
n ∑ ziz′i ·

(
∑

1
n

xiz′i

)−1

where s2
IV is a consistent estimator of the error variance σ2:

s2
IV =

ε̂′IV ε̂ IV

n − k

To show consistency of s2
IV , we substitute y = Xβ + ε into the residuals ε̂ IV :

ε̂ IV = y − Xβ̂ IV = y − X(Z′X)−1Z′y =
(

In − X(Z′X)−1Z′
)

ε

The consistency of s2
IV for σ2 follows from the fact that plim ε′ε

n = σ2 and the validity
condition.

Example 4.2: Special case: L = k = 2

Consider the simple linear model yi = α + βx̃i + εi, where the regressor x̃i is
endogenous, E(x̃iεi) ̸= 0. The vector of regressors is xi = (1, x̃i)

′ (including the
constant). The vector of instruments is zi = (1, z̃i)

′, assuming the validity condition
E(z̃iεi) = 0.

The relevance condition holds if the matrix E(zix′i) has full rank, which is equivalent
to Cov(z̃i, x̃i) ̸= 0:a

E(zix′i) =
(

1 E(x̃i)
E(z̃i) E(z̃i x̃i)

)
The IV estimator for the slope coefficient β and the intercept α are given by:

β̂ IV =
Ĉov(z̃i, yi)

Ĉov(z̃i, x̃i)
=

∑(z̃i − ¯̃z)(yi − ȳ)
∑(z̃i − ¯̃x)(x̃i − ¯̃x)

and α̂IV = ȳ − β̂ IV ¯̃x

Under the assumption of homoskedasticity (E(ε2
i |zi) = σ2), the asymptotic variance

of the slope estimator β̂ IV can be simplified and estimated as:

V(β̂ IV) = σ2 V(x̃i)

Cov(z̃i, x̃i)2

This can also be expressed using the squared correlation coefficient, Corr(z̃i, x̃i)
2:

V(β̂ IV) =
σ2

Corr(z̃i, x̃i)2V(x̃i)

53



For a given distribution of the regressor x̃i, the variance V(β̂ IV) has the minimal
possible value (σ2/V(x̃i)) when the correlation between x̃i and z̃i is unit. In general,
the lower the correlation, the higher the variance of β̂ IV .

1. Good instruments are not only uncorrelated with the regression error (which
guarantees the consistency of the IV estimator) but also highly correlated with
the explanatory variables (which gives the precision of the IV estimator).

2. The standard errors of IV regression are always higher than the OLS standard
errors. We see that by the fact that as mentioned just above, V(β̂ IV) is minimized
whenever Corr(z̃i, x̃i) = 1, that is whenever x̃i is an insturment for itself, the OLS
case.

aNote that here, Cov(z̃i, x̃i) = E(z̃i x̃i)− E(z̃i)E(x̃i) = det(E(zix′i)). Obviously, if det(E(zix′i)) = 0,
the matrix is not invertible.

4.4 Two-Stage Least Squares (2SLS)

4.4.1 2SLS derivation

Let us now introduce the Two-Stage Least Squares (2SLS) estimator. We will get back to
this when we cover GMM. For now, consider to overidentified case where, for any positive
definite matrix Wℓ×ℓ, β can be expressed as

β = (Π′WΠ)−1Π′Wλ

In the 2SLS case, we use

Ŵ =
1
n

n

∑
i=1

ziz′i =
1
n

Z′Z

The 2SLS estimator is therefore

β̃2SLS = (X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1Z′y = (X′PZX)−1X′PZy

The idea is that we are regressing X on Z first (first stage), to get the fitted values X̂ and
then regressing y on X̂. This is what is called Theil’s interpretation.

4.4.2 Asymptotic properties of 2SLS

The Two-Stage Least Squares (2SLS) estimator β̃2SLS is a generalization of the IV estimator
used in the over-identified case (ℓ > k). We analyze its consistency using asymptotic
theory.
The 2SLS estimator can be written as:

β̃2SLS = (X′PzX)−1X′Pzy

Substituting y = Xβ + ε and manipulating the terms, we get:

β̃2SLS = β + (X′PzX)−1X′Pzε
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Now, we replace the projection matrix Pz = Z(Z′Z)−1Z′ and rewrite the expression using
sample averages (multiplying and dividing by n):

β̃2SLS = β +

[
1
n

X′Z
(

1
n

Z′Z
)−1 1

n
Z′X

]−1
1
n

X′Z
(

1
n

Z′Z
)−1 1

n
Z′ε

We rely on the standard regularity conditions (i.i.d. observations, moment existence)
and the two core IV assumptions: validity and relevance. By the WLLN (Khinchine’s or
similar), the sample averages converge in probability to their population expectations:

plim
1
n

X′Z = plim
1
n ∑ xiz′i = E(xiz′i) ≡ Qxz

plim
1
n

Z′X = plim
1
n ∑ zix′i = E(zix′i) ≡ Qzx (Note: Qzx = Q′

xz)

plim
1
n

Z′Z = plim
1
n ∑ ziz′i = E(ziz′i) ≡ Qzz

plim
1
n

Z′ε = plim
1
n ∑ ziεi = E(ziεi) = 0 (Validity assumption)

Applying the WLLN and the Continuous Mapping Theorem (CMT) to the asymptotic
expression for β̃2SLS:

plim β̃2SLS = β +
[

QxzQ−1
zz Qzx

]−1
QxzQ−1

zz plim
(

1
n

Z′ε

)
Substituting the validity condition plim( 1

n Z′ε) = 0:

plim β̃2SLS = β +
[

QxzQ−1
zz Qzx

]−1
QxzQ−1

zz · 0

plim β̃2SLS = β

This shows that the 2SLS estimator β̃2SLS is consistent under the standard validity and
relevance conditions. The relevance condition ensures that the matrix [QxzQ−1

zz Qzx] is
invertible.

Having established the consistency of the 2SLS estimator β̃2SLS, we now move to its
asymptotic normality. We start with the expression for the difference between the 2SLS
estimator and the true parameter vector, scaled by

√
n:

√
n(β̃2SLS − β) =

[
1
n

X′Z
(

1
n

Z′Z
)−1 1

n
Z′X

]−1
1
n

X′Z
(

1
n

Z′Z
)−1 1√

n
Z′ε

Suppose the sample is i.i.d. is we have the valid moment conditions. By the Multivariate
Lindeberg-Lévy Central Limit Theorem, the scaled sum of the moment condition terms
converges in distribution to a normal distribution:

1√
n

Z′ε =
1√
n ∑ ziεi

d−→ N (0, Ωzz)
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where the asymptotic variance of the moment vector is Ωzz = V(ziεi) = E(ε2
i ziz′i).

We apply the Continuous Mapping Theorem (CMT) by taking the probability limit of the
deterministic (non-stochastic) parts of the

√
n(β̃2SLS − β) expression, and substituting the

CLT result for the stochastic part. Recall the probability limits:

plim
1
n

X′Z = Qxz

plim
1
n

Z′Z = Qzz

plim
1
n

Z′X = Qzx

Applying these limits to the scaled expression:

√
n(β̃2SLS − β)

d−→
[

QxzQ−1
zz Qzx

]−1
QxzQ−1

zz · N (0, Ωzz)

Therefore, the asymptotic distribution is:

√
n(β̃2SLS − β)

d−→ N (0, V2SLS)

with the asymptotic variance V2SLS given by the generalized "sandwich" formula:

V2SLS ≡
[

QxzQ−1
zz Qzx

]−1
QxzQ−1

zz ΩzzQ−1
zz Qzx

[
QxzQ−1

zz Qzx

]−1

This is the standard, heteroskedasticity-robust formula for the asymptotic variance of the
2SLS estimator. Notice that the 2SLS estimator is inefficient comapred to OLS. The variance
is higher by design.

To use the derived asymptotic normality for inference (t-tests, confidence intervals), we
need a consistent estimator for the asymptotic variance V2SLS. We obtain such consistent
estimator of the asymptotic variance V2SLS by replacing all population moment matrices
(Qxz, Qzz, and Ωzz) with their consistent sample analogs.

The sample analog for the matrix Ωzz = E(ε2
i ziz′i) is obtained by using the 2SLS residuals

ε̃i,2SLS = yi − x′i β̃2SLS:
1
n ∑(yi − x′i β̃2SLS)

2ziz′i

The consistent estimator V̂2SLS is then the robust (Heteroskedasticity-Consistent) sandwich
estimator, obtained by substituting the sample analogs into the general formula for V2SLS.

If we assume conditional homoskedasticity of the errors with respect to the instruments,
i.e., E(ε2

i |zi) = σ2, the asymptotic variance simplifies. Under homoskedasticity, the middle
matrix Ωzz simplifies to:

Ωzz = E(ε2
i ziz′i) = σ2E(ziz′i) = σ2Qzz
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Substituting this into the V2SLS formula and simplifying yields:

V2SLS = σ2
[

QxzQ−1
zz Qzx

]−1

We replace the unknown population variance σ2 with its consistent sample estimator, s2:

s2 =
(y − Xβ̃2SLS)

′(y − Xβ̃2SLS)

n − k
=

ε̃′2SLS ε̃2SLS

n − k

The final homoskedastic estimator for the asymptotic variance is obtained by substituting
s2 and the sample moments for Qxz, Qzz, and Qzx:

V̂2SLS = s2

[
1
n

X′Z
(

1
n

Z′Z
)−1 1

n
Z′X

]−1

4.5 Validity Tests and Weak Instruments

4.5.1 Testing for the Validity of Instruments: The J-Test

In the over-identified case (ℓ > k), we have more instruments (zi, dimension ℓ) than
endogenous regressors (xi, dimension k). This provides ℓ− k extra moment conditions
that can be used to test the validity of the instruments.

The core idea is that if the population moment conditions E(ziεi) = 0 are true (the null
hypothesis H0), the sample analog 1

n ∑ zi(yi − x′i β̃2SLS) should be close to zero.
This provides a basis for a model specification test of the null hypothesis (H0) against the
alternative hypothesis (H1):

H0 : E(ziεi) = 0 versus H1 : E(ziεi) ̸= 0

The test statistic is known as the Jn statistic (or Sargan’s test in the homoskedastic case, or
Hansen’s J test in the heteroskedastic/GMM case):

Jn = n
(

1
n ∑ zi(yi − x′i β̃2SLS)

)′ (
s2 1

n ∑ ziz′i

)−1 ( 1
n ∑ zi(yi − x′i β̃2SLS)

)
Under the null hypothesis H0, the Jn test statistic is asymptotically distributed as a chi-
squared distribution with degrees of freedom equal to the number of overidentifying
restrictions:

Jn
d−→ χ2(ℓ− k) under H0

The Jn test is a test of the overidentifying restrictions. If we reject H0 (the p-value is
small), it suggests that at least some of the moment conditions are invalid, implying that at
least some of the instruments zi are not truly exogenous. If the errors are conditionally
heteroskedastic, the test must be constructed differently and should be based on an efficient
GMM estimator, which will be discussed in the GMM topic.
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4.5.2 Weak Instruments

Instruments are considered weak when they are only weakly correlated with the endoge-
nous explanatory variables they instrument. They fail to provide sufficient variation to
effectively isolate the exogenous component of the endogenous regressors. This can lead to
biased and inconsistent parameters estimates, as well as inflated standard errors, making
inference unreliable.

A way to test for weak instruments is to use a First-stage F-statistic. It aims at assessing the
joint significance of the instruments in the first-stage regression. The initial rule of thumb,
determined by Staiger and Stock, 1994 was an F-stat above 10 was enough to claim the
instrument is not weak. New papers such as Lee et al., 2022 claims that is should actually
be 100.

5 GMM and Extremum Estimation

In this section, we talk about the Generalized method of moments (GMM), and introduce
extremum estimators.

5.1 Intro to GMM

Many estimation methods in econometrics are method-of-moments estimators, in which
the k-dimensional parameter of interest θ0 is assumed to satisfy an unconditional moment
condition

E(g(zi, θ0)) = 0

for some J-dimensional vector of functions g(zi, θ0) of the observed data vector zi and the
parameter value θ ∈ Θ. If we assume that θ0 is the unique solution of the population
moment, and we are in a just-identified case (J = k). The method of moment estimator θ̂ is
defined as a solution to the sample analogue of the population moment condition:

1
n

n

∑
i=1

g(zi, θ̂) = 0

The OLS estimation derived in section 1.2.2 is a perfect example of a method of moment
estimator in this context, with the population moment condition being

E(xi(yi − x′i β)) = 016

Similarly, the IV estimator (denoting ζi the vector of instruments) is based on the moment
condition

E(ζi(yi − x′i β)) = 0

The MLE estimator can also be written as a method-of-moments estimators

E(s(zi, θ0))

16Just to understand notation better, in this case we have zi ≡ (x′i , y′i) and g(zi, β) ≡ xi(yi − x′i β)
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where s(zi, θ0) is the score function.

So far, we have dealt with cases where the number of equations is the same as the number
of unknown parameters. Now, consider the overidentified where we have more moment
conditions that parameters to estimate (J > k). For instance, we might have knowledge
that the distribution of a scalar random variable zi is not skewed, which allows us to have
the moment E

(
(z − E(z))3) = 0. If we want t0 estimate θ0 = E(z), we have the following

moment condition

E

[(
zi − θ0

(zi − θ0)
3

)]
= 0

In general, whenever J > k, the system of equations

gn(θ) ≡
1
n

n

∑
i=1

g(zi, θ) = 0

is overdetermined, meaning that there is no solution to this system. We provide the
solution below.

Definition 5.1: Generalized Method of Moments Estimator

The Generalized Method of Moments (GMM) Estimator is defined as the estimator
minimizing the weighted Euclidean norm, that is

θ̂n = arg min
θ∈Θ

gn(θ)
′Wngn(θ) ≡ arg min

θ∈Θ
Jn(θ)

where Wn is a symmetric positive matrix which converges in probability to a positive
definite matrix W0.

The idea is that since we are in an over-identified case, we can’t make each moment equal
to ero in the sample. Instead, we try to minimize the sum of squares, that is we try to make
all theoretical moments close to zero. The weight matrix just gives more importance to the
moments that we theoretically believe are true.

Consider the basic linear model. We can write

gn(β) =
1
n

n

∑
i=1

zi(yi − x′i β) =
1
n

Z′(y−Xβ) =⇒ Jn(β) =

[
1
n

Z′(y − Xβ)

]′
Wn

[
1
n

Z′(y − Xβ)

]
Taking the first-order condition with respect to β, we get17

∂Jn(β)

∂β
= 0 ⇔ 2

[
∂gn(β̂)

∂β

]′
Wngn(β̂) = 0 ⇔

[
1
n

Z′X
]′

Wn

[
1
n

Z′(Y − Xβ)

]
= 0

17We use the following matrix multiplication rule:

∂

∂x

[
f (x)′B f (x) = 2

∂ f (x)
∂x

′
B f (x)

]
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⇔ 1
n
(X′Z)Wn

1
n

Z′Y =
1
n
(X′Z)Wn

[
1
n

Z′Xβ̂

]
⇔ β̂ =

[
X′ZWnZ′X

]−1 X′ZWnZ′y

Now, notice that if we impose Wn = In and Z = X, we obtain that

β̂ = (X′XInX′X)−1X′XInX′y = (X′X)−1X′y = β̂OLS

If we impose Wn = (Z′Z)−1, we obtain

β̂ =
[

X′Z(Z′Z)−1Z′X
]−1

X′Z(Z′Z)−1Z′y = β̂2SLS

With these easy examples, we see that the different estimators are just version of GMM
with a different weight matrix Wn. This leads us to our next concept, extremum estimators.

5.2 Extremum Estimators

The concept of extremum estimators is a class of estimator that is derived by finding
extreme values - either a maximum of a minimum- of some objective function Qn(θ):

θ̂ = arg max
θ∈Θ

Qn(θ)

We discuss general asymptotic theory based on this class of estimators.

5.2.1 General Consistency

We start by introducing the general consistency theorem, which I prove (but this can be
skipped).

Theorem 5.1: General Consistency Theorem (Newey and McFadden, 1994)

Suppose that

1. Θ is compact

2. The limit function Q∗ is uniquely maximized at θ0 (Identification)

3. Q∗ is continuous in θ ∈ Θ

4. supθ∈Θ | Qn(θ)− Q∗(θ) |
p−→ 0 for some Q∗ : Θ → R (Uniform Convergence)

Then, we acheive consistency:
θ̂

p−→ θ0

Proof. Pick any ε > 0. Since θ̂ maximizes Qn(θ) by definition, we have that

Qn(θ̂) > Qn(θ0)−
ε

3
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By condition 4, for any θ ∈ Θ, we have that

| Qn(θ)− Q∗(θ) |<
ε

3
with probability approaching 1 (w.p.a.1)18

Therefore, w.p.a.1, we have

| Qn(θ̂)− Q∗(θ̂) |<
ε

3
=⇒ Qn(θ̂)− Q∗(θ̂) <

ε

3
since (Qn(θ̂)− Q∗(θ̂)) > 0 and

| Qn(θ0)− Q∗(θ0) |<
ε

3
=⇒ Q∗(θ0)− Qn(θ0) <

ε

3
since (Qn(θ0)− Q∗(θ0)) < 0

Combining these inequalities, w.p.a.1, we get

Q∗(θ̂) +
ε

3
> Qn(θ̂) > Qn(θ0)−

ε

3
> Q∗(θ0)−

2ε

3
=⇒ Q∗(θ̂) > Q∗(θ0)− ε (⋆)

By definition of convergence in probability, we want P(θ̂ ∈ N ) → 1 for any open neigh-
borhood N ⊂ Θ containing θ0. Pick such set. Since N is open, N c is closed. Additionally,
by condition 1, Θ is compact, which implies that Θ ∩ N c is also compact. Since Q∗ is
continuous (by condition 3), Weierstrass theorem guarantees that there exists θ∗ ∈ Θ ∩N c

such that
sup

Θ∩N c
Q∗(θ) = Q∗(θ∗)

Since Q∗ is uniquely maximized at θ0 by condition 4, we know that Q∗(θ0) > Q∗(θ∗). Set
ε′ := Q∗(θ0)− Q∗(θ∗) > 0. Now, if we use equation (⋆) and set ε = ε′, we get

Q∗(θ̂) > Q∗(θ0)− ε′ = Q∗(θ∗) = sup
Θ∩N c

Q∗(θ) w.p.a.1

This implies that θ̂ ∈ N with probability approaching 1, so we are done.

The proof is not easy, so I try to give some intuition below. The estimator θ̂ is chosen
because it makes the sample objective function (Qn(θ)) as high as possible. Therefore,
Qn(θ̂) must be slightly greater than Qn(θ0).

The key step is establishing that the sample function Qn(θ) is an excellent approximation
of the true function Q∗(θ) everywhere (Uniform Convergence). This means that if we
evaluate the true function Q∗ at the sample peak θ̂, the result Q∗(θ̂) must be very close to
the true peak value Q∗(θ0). That’s the meaning of the inequality Q∗(θ̂) > Q∗(θ0)− ε: the
θ̂ chosen by the sample must give an outcome on the true function that is nearly optimal.

Finally, we use the Identification condition, which states that θ0 is the unique point that
maximizes Q∗. Because no other point θ ̸= θ0 can give a value of Q∗ as high as Q∗(θ0), the
θ̂ that gives a nearly optimal value Q∗(θ̂) must itself be forced into a small neighborhood

18This holds because uniform convergence implies pointwise convergence. Additionally, w.p.a.1 is
equivalent to convergence in probability. Recall that an event event An holds with probability approaching 1
means limn→∞ P(An) = 1.
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around θ0. If θ̂ were far away, the uniqueness condition would guarantee that Q∗(θ̂) would
be significantly lower, which contradicts our finding from step 2.

In practice, most efforts are devoted to check condition 2 and 4. For condition 4, we
typically need some kind of uniform law of large numbers.

Lemma 5.1: Uniform Law of Large Numbers (ULLN)

Suppose that

1. {zi}n
i=1 is i.i.d.

2. g(z, θ) is almost surely continuous at each θ ∈ Θ, and Θ is compact.

3. There is d(z) such that |g(z, θ)| ≤ d(z) for all θ ∈ Θ and almost every z, and
E[d(z)] < ∞.

Then, we have the uniform convergence condition:

sup
θ∈Θ

| ḡ(θ)− E[g(z, θ)] | p−→ 0

where ḡ(θ) = 1
n ∑n

i=1 g(zi, θ) is the sample counterpart of the population moment
E[g(z, θ)]. Additionally, E[g(z, θ)] is continuous at each θ ∈ Θ.

Note that if we take 1
n ∑n

i=1 g(zi), we are back in the usual WLLn case, where we need to
assume E(g(z)) < ∞. Here, we have that g(·) is a function of θ, so we need to assume
something stronger. Indeed, to guarantee uniform convergence, the moment condition
needs to hold for the worst possible value of the function across the entire parameter space.
The condition E(supθ∈Θ |g(z, θ)|) < ∞ ensures that the function g(z, θ) is well-behaved
over the entire compact set Θ. This condition is known as the dominance condition.

5.2.2 General asymptotic normality

Suppose that we have achieved consistency. We now want to derive the asymptotic normal
distribution in the form √

n(θ̂ − θ0)
d−→ N (0, V)

We derive some the asymptotic distribution and then provide the formal theorem. Suppose
that Qn(θ) is continuously twice differentiable. We can look at the FOC for θ̂:

∂Qn(θ̂)

∂θ
= 0

We can write the Mean Value Theorem (MVT) around θ0 as follows:

0 =
∂Qn(θ0)

∂θ
+

∂2Qn(θ̃)

∂θ∂θ′
(θ̂ − θ0)
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where θ̃ is a point on the line joining θ0 and θ̂. Assuming the inverse exists, we can therefore
rewrite

√
n(θ̂ − θ0) = −

(
∂2Qn(θ̃)

∂θ∂θ′

)−1 √
n

∂Qn(θ0)

∂θ

We now move on to the theorem to understand what conditions are necessary and sufficient
for asymptotic normality (I do not prove this theorem).

Theorem 5.2: General asymptotic normlality theorem (Newey and McFadden, 1994)

Suppose that

a. θ̂
p−→ θ0 and θ0 ∈ intΘ

b. Qn(θ) is continuously twice differentiable in a neighborhood N of θ0

c.
√

n ∂Qn(θ0)
∂θ

d−→ N (0, Σ)

d. There exists H(θ) that is continuous at θ0 such that

sup
θ∈N

| ∂2Qn(θ̃)

∂θ∂θ′
− H(θ) | p−→ 0

and H = H(θ0) non-singular.

Then, we obtain asymptotic normality

√
n(θ̂ − θ0)

d−→ N (0, H−1ΣH−1)

5.3 Linking the two concepts

As we have shown above, the GMM estimator is nothing but an extremum estimator
where

Qn(θ) = −Jn(θ) = −gn(θ)
′Ŵgn(θ) and θ̂W = arg max

θ∈Θ
Qn(θ)

Theorem 5.1 and 5.2 can be applied directly, but it would be nice to have some more primi-
tive conditions. The following theorem provides the primitive conditions for consistency.

Theorem 5.3: Consistency of GMME

Suppose {zi}n
i=1 is iid and

(i) Θ is compact

(ii) Ŵ
p−→ W0 and W0 is symmetric and positive definite

(iii) g(z, θ) is almost surely continuous at each θ ∈ Θ
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(iv) E(supθ∈Θ |g(z, θ)|) < ∞

(v) W0E(g(z, θ)) = 0 only if θ = θ0

Proof. It is sufficient to check conditions 1-4 of Theorem 5.1. Condition 1 is guaranteed by
i). We now check condition 4. In this context, we have that

Q∗(θ) = −E(g(z, θ))′WE(g(z, θ))

We want to show that

sup
θ∈Θ

|Qn(θ)− Q∗(θ)| = sup
θ∈Θ

|Jn(θ)− J∗(θ)|
p−→ 0

We can rewrite the expression in the absolute value as

|Qn(θ)− Q∗(θ)| = |gn(θ)
′Ŵngn(θ)− E[g(z, θ)]′W0E[g(z, θ)]|

Let ḡ(θ) = gn(θ) and µ(θ) = E[g(z, θ)]. Also, let Ŵ = Ŵn and W = W0. Therefore, we
have something of the form

|Qn(θ)− Q∗(θ)| = |ḡ(θ)′Ŵḡ(θ)− µ(θ)′Wµ(θ)|

We use the identity ḡ(θ) = µ(θ) + [ḡ(θ)− µ(θ)] and substitute it into the sample objective
term:

|(µ + (ḡ − µ))′Ŵ(µ + (ḡ − µ))− µ′Wµ|
Expanding the quadratic form:19

|µ′Ŵµ + µ′Ŵ(ḡ − µ) + (ḡ − µ)′Ŵµ + (ḡ − µ)′Ŵ(ḡ − µ)− µ′Wµ|

We rearrange these terms to isolate the errors in the moments and the errors in the weight-
ing matrix:

|{(ḡ − µ)′Ŵ(ḡ − µ)}+ {µ′(Ŵ + Ŵ ′)(ḡ − µ)}+ {µ′(Ŵ − W)µ}|

Using the Triangle Inequality20, we separate the terms into the T1, T2, T3:

|Qn(θ)− Q∗(θ)| ≤ T1(θ) + T2(θ) + T3(θ)

where:

• T1(θ) = |{ḡ(θ)− µ(θ)}′Ŵ{ḡ(θ)− µ(θ)}|

• T2(θ) = |µ(θ)′(Ŵ + Ŵ ′){ḡ(θ)− µ(θ)}|

• T3(θ) = |µ(θ)′(Ŵ − W)µ(θ)|
19(A + B)′W(A + B) = A′WA + A′WB + B′WA + B′WB
20|a + b + c| ≤ |a|+ |b|+ |c|

64



Now, supθ∈Θ T1(θ)
p−→ 0 and supθ∈Θ T2(θ)

p−→ 0 by ULLN, which is guaranteed by iid

assumption as well as i), iii) and iv). From ii), we obtain that supθ∈Θ T3(θ)
p−→ 0, and

condition 4 is therefore verified. ULLN also implies that E[g(z, θ)] is continuous in θ ∈ Θ,
which in turns implies that Q∗(θ) is also continuous in θ ∈ Θ, so condition 3 is verified.

Next, we verify condition 2: the limit function Q∗ is uniquely maximized at θ0. By the
population moment condition, E[g(z, θ0)] = 0, which implies Q∗(θ0) = 0. Since W0 is
positive definite, we have Q∗(θ) ≤ 0 for all θ ∈ Θ. Thus, it is sufficient to show that
Q∗(θ) < 0 for all θ ̸= θ0.

Since W0 is symmetric and positive definite, there exists a matrix R such that W0 = R′R.
For any θ ̸= θ0, assumption (v) implies W0E[g(z, θ)] ̸= 0. This further implies that:

RE[g(z, θ)] ̸= 0

Therefore, for any θ ̸= θ0:

Q∗(θ) = −E[g(z, θ)]′W0E[g(z, θ)]

= −{RE[g(z, θ)]}′{RE[g(z, θ)]}
< 0

where the strict inequality follows from the fact that the inner product of a non-zero vector
with itself is strictly positive. Thus, θ0 is the unique maximizer of Q∗, and Condition 2 is
verified.

This proof is hard, but allows us to see how setting primitive conditions yields the nice and
general properties mentioned initially. We are now moving to the asymptotic normality
counterpart. This is more difficult, but I really do find helpful to see how the asymptotic
variance is derived.

Theorem 5.4: Asymptotic Normality of GMM

Suppose the assumptions for GMM consistency are satisfied. Additionally, assume:

(i) θ0 ∈ int Θ

(ii) g(z, θ) is twice continuously differentiable in a neighborhood N of θ0 with
probability one

(iii) E[|g(z, θ0)|2] < ∞, E[| ∂g(z,θ0)
∂θ′ |] < ∞, and E

[
supθ∈N

∣∣∣ ∂2g(j)(z,θ)
∂θ∂θ′

∣∣∣] < ∞ for j =

1, . . . , dim g

(iv) G′WG is nonsingular, where G = E
[

∂g(z,θ0)
∂θ′

]
Then, the GMM estimator is asymptotically normal:

√
n(θ̂ − θ0)

d−→ N
(

0, (G′WG)−1G′WΩWG(G′WG)−1
)
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where Ω = E[g(z, θ0)g(z, θ0)
′] is the asymptotic variance of the moment conditions.

Proof. We provide a proof by construction, which is a bit different from what we have
done in the last proof. We are not going to show why each primitive condition implies
that 5.2 holds. Instead, we will construct the asymptotic distribution, highlighting where
the assumptions come to play.

Consider Qn(θ) = −1
2

[
gn(θ)′Ŵgn(θ)

]
≡ f (g(θ)). Assuming i) and ii) allows us to write

the MVT:
√

n(θ̂ − θ0) = −
(

∂2Qn(θ̃)

∂θ∂θ′

)−1 √
n

∂Qn(θ0)

∂θ

Let us take the first derivative:

∂Qn(θ)

∂θ
= −

(
∂gn(θ)′

∂θ

)(
Ŵ + Ŵ ′

2

)
gn(θ) = −

(
∂gn(θ)

∂θ′

)′
(

Ŵ + Ŵ ′

2

)
gn(θ)

where the first equality comes from the Chain rule21 and the second inequality from the
Transpose rule.22 Now, if we the second assumption of iii), that is E[| ∂g(z,θ0)

∂θ′ |] < ∞, we
have that

∂gn(z, θ0)

∂θ′
p−→ E

[
∂g(z, θ0)

∂θ′

]
≡ G

Additionally, by consistency assumptions,

Ŵ + Ŵ ′

2
p−→ W by WLLN

Now, we move to the variance, which can be written as follows by iid

V(gn(zi, θ0))− E(gn(zi, θ0)gn(zi, θ0)
′) ≡ Ω < ∞

It is finite by the first assumption of iii), E[|g(z, θ0)|2] < ∞ and Cauchy-Schwarz inequality.
By Multivariate CLT, we have that

√
ngn(zi, θ0) =

1√
n

n

∑
i=1

g(zi, θ0)
d−→ N (0, Ω)

21To take the derivative with respect to θ, we use the rule for a quadratic form f (u) = u′Mu where u is a
function of θ:

∂ f
∂θ

=
∂u′

∂θ
Mu +

∂u′

∂θ
M′u =

∂u′

∂θ
(M + M′)u

22Transpose rule:
∂ḡ(θ)′

∂θ
=

(
∂ḡ(θ)

∂θ′

)′
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Therefore, by CMT, we have that

√
n

∂Qn(θ0)

∂θ

d−→ −G′W · N (0, Ω) = N (0, G′WΩWG) ≡ N (0, Σ)

We can move to the denominator. Differentiating again with respect to θ′, we treat the
score as a product of two functions of θ: the Jacobian term and the moment term. Using the
product rule ( f · g)′ = f ′g + f g′, the j-th column of the Hessian (derivative with respect to
θj) is expressed as:

∂2Qn(θ)

∂θ∂θj
= −

(
∂2gn(θ)′

∂θ∂θj

)(
Ŵ + Ŵ ′

2

)
gn(θ)︸ ︷︷ ︸

T1(θ)

−
(

∂gn(θ)′

∂θ

)(
Ŵ + Ŵ ′

2

)(
∂gn(θ)

∂θj

)
︸ ︷︷ ︸

T2(θ)

Now, assuming the last part of iii), that is E
[
supθ∈N

∣∣∣ ∂2g(j)(z,θ)
∂θ∂θ′

∣∣∣] < ∞ for j = 1, . . . , dim g,
we have by ULLN that

T1(θ) = Op(1) · Op(1) · op(1) = op(1)

noting that E(g(z, θ0)) = 0 by GMM assumption. We also have that, by ULLN,

T2(θ)
p−→ G′WG ≡ H

which we assume to be non-singular in assumption iv).

Therefore, by CMT, we obtain the desired result

√
n(θ̂ − θ0)

d−→ N (0, H−1ΣH−1) with H−1ΣH−1 = (G′WG)−1G′WΩWG(G′WG)−1

5.4 Optimal GMM

We can now introduce the optimal weighting matrix, that is the weighting matrix that
minimizes the asymptotic variance.

Theorem 5.5: Optimal Weighting Matrix for GMM

The GMM asymptotic variance

V(W) = (G′WG)−1G′WΩWG(G′WG)−1

is minimized in the matrix sense (i.e., V(W)− V(Ω−1) is positive semi-definite) by
choosing W = Ω−1. Under this choice, the variance collapses to:

Avar(θ̂) = (G′Ω−1G)−1
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Proof. We want to show that for any symmetric positive definite matrix W, V(W)−V(Ω−1)
is a positive semi-definite matrix.

Let A = (G′WG)−1G′W and B = G. Note that by construction, AB = I. We are comparing:

V(W) = AΩA′ and V(Ω−1) = (G′Ω−1G)−1

Consider the following matrix, which is positive semi-definite by construction (as it is of
the form XX′):

(A − (G′Ω−1G)−1G′Ω−1)Ω(A − (G′Ω−1G)−1G′Ω−1)′ ≥ 0

Expanding this product:

AΩA′ − AΩΩ−1G(G′Ω−1G)−1 − (G′Ω−1G)−1G′Ω−1ΩA′

+ (G′Ω−1G)−1G′Ω−1ΩΩ−1G(G′Ω−1G)−1

Using the fact that ΩΩ−1 = I and AG = I:

= AΩA′ − (AG)(G′Ω−1G)−1 − (G′Ω−1G)−1(G′A′) + (G′Ω−1G)−1(G′Ω−1G)(G′Ω−1G)−1

= AΩA′ − (G′Ω−1G)−1 − (G′Ω−1G)−1 + (G′Ω−1G)−1

= AΩA′ − (G′Ω−1G)−1

Since we started with a quadratic form that is ≥ 0, we have established that:

(G′WG)−1G′WΩWG(G′WG)−1 ≥ (G′Ω−1G)−1

The equality holds when A = (G′Ω−1G)−1G′Ω−1, which is satisfied when W = Ω−1.

The problem is of course that the optimal weight Ω is a function of θ0, and is therefore
infeasible. This is why we introduce what is called the Two-step GMM.

Definition 5.2: Two Step GMM

The two step GMM is computed as follows.

1. Compute a 1st step GMME θ̂W using some Wn (e.g. Wn = In):

θ̂W = arg min
θ∈Θ

gn(θ)
′Wngn(θ)

2. Estimate Ω̂ as follows

Ω̂ =
1
n

n

∑
i=1

g(zi, θ̂W)g(zi, θ̂W)′

3. Compute the 2-step GMME using the estimated optimal weight matrix Ω̂−1

θ̂2step = arg min
θ∈Θ

gn(θ)
′Ω̂−1gn(θ)
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Note that θ̂2step is more efficient than θ̂W . Additionally, steps 2-3 can be repeated (which
is called repeated or iterated GMM). While the 2-step GMM estimator is asymptotically
efficient, the estimation of Ω depends on the initial (sub-optimal) θ̂W . This suggests that
repeating steps 2 and 3 iteratively—using the latest θ̂ to update Ω̂—can improve finite
sample performance.

The procedure is as follows. We continue updating Ω̂(θ̂i−1) and re-estimating θ̂i until the
difference ∥θ̂i − θ̂i−1∥ falls below a small tolerance ϵθ (e.g., 10−6). Note that all iterations
beyond the second step share the same asymptotic distribution as the 2-step estimator.
The primary gain is higher efficiency in finite samples.

5.5 Testing in GMM

5.5.1 Sargan-Hansen Test

One of the main tests in this context has to do with overidentified moment validity. The
null/alternative hypothesess can be written as

H0 : E(g(zi, θ)) = 0 for some θ ∈ Θ v.s. H1 : E(g(zi, θ)) ̸= 0 for all θ ∈ Θ

Rejecting the null hypothesis here means that at least one moment condition does not hold
in the data.

Definition 5.3: J-statistic

The J-statistic is written as follows

Jn = n min
θ∈Θ

gn(θ)
′Ω̂−1gn(θ) = ngn(θ̂)

′Ω̂−1gnθ̂)

The intuition is that if the model is correct, gn(θ̂) and Jn have to be close to zero. We basi-
cally need gn(θ̂)′gn(θ̂) to go to zero faster than n goes to infinity. That is, we shoud have
gn(θ̂)′gn(θ̂) = o( 1

nδ ) for δ > 1. This is a sufficient condition if we assume that Ω̂−1 p−→ Ω−1,
meaning that Ω̂−1 = O(1).

In other words, we know that
√

ngn(θ̂) converges to a normal distribution. Since
√

ngn(θ̂) =
Op(1), it follows that:

gn(θ̂) = Op

(
1√
n

)
Therefore, the quadratic form gn(θ̂)′Ω̂−1gn(θ̂) is Op(

1
n ). When you multiply this by the n

out front in the J-statistic formula, you get an Op(1) object, which allows it to converge to
a χ2 distribution rather than collapsing to zero or diverging to infinity. Therefore, under
H0, we have that

Jn
d−→ χ2

(J−k)

Note that J-test (or Sargan-Hansen test) is only applicable in overidentified models (J > k).
A rejection suggests either that the moment conditions are invalid (instruments are not
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exogenous) or that the functional form of the model is misspecified. It requires the use of
the efficient (optimal) weighting matrix Ω̂−1; if a sub-optimal W is used, the statistic does
not follow a χ2 distribution.

5.5.2 Hausman Test

The test compares two estimators, θ̂1 and θ̂2, that behave differently under H0 and H1. θ̂1
is consistent and efficient under H0, but inconsistent under H1. On the other hand, θ̂2 is
consistent under both H0 and H1, but is inefficient under H0. The idea is that if H0 is true,
both estimators should converge to the same value, so the difference (θ̂2 − θ̂1) should be
close to zero. If it is far from zero, we reject H0 in favor of H1.

Example 5.1: Hausman Exogeneity Test: OLS vs. 2SLS

Consider a linear regression model yi = x′i β0 + εi, where we suspect some regressors
in xi may be endogenous. We test the following hypotheses:

• H0 : E[xiεi] = 0 (Exogeneity)

• H1 : E[xiεi] ̸= 0 (Endogeneity)

We compare two estimators with different properties:

• β̂OLS: Consistent and efficient under H0, but inconsistent under H1.

• β̂2SLS: Consistent under both H0 and H1, but inefficient under H0.

Let q̂ = β̂2SLS − β̂OLS. Under H0, q̂
p−→ 0 because both estimators are consistent. Under

H1, q̂
p−→ plim β̂2SLS − plim β̂OLS ̸= 0.

The Hausman test statistic H is defined as:

H = n(β̂2SLS − β̂OLS)
′V̂−1

q (β̂2SLS − β̂OLS)
d−→ χ2(k)

where k is the dimension of β0. Crucially, because β̂OLS is efficient under H0, Hausman
showed that the variance of the difference simplifies to:

V̂q = V̂2SLS − V̂OLS

We reject exogeneity if H > χ2
1−α(k).

In practice, it is often difficult to know with certainty which instruments are truly valid. If
both estimators use invalid instruments, the test loses its ability to distinguish between the
models.

Additionally, the test relies on the difference in asymptotic variances [V̂ar(β̂2SLS)− V̂ar(β̂OLS)].
If the additional instruments in the second-stage estimator do not actually improve the
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asymptotic variance (i.e., they add no new information), this matrix difference may not be
invertible, causing the test to fail.

Finally, if the "untrusted" instrument is invalid but happens to be uncorrelated with both
the "trusted" instruments and the endogenous variables, β̂1 (the efficient estimator) might
remain consistent even under H1. In this specific case, the test would fail to reject the null,
despite the instrument being technically invalid.

6 Treatment Effects

6.1 Setup

We start by defining the notation we will use throughout this section. First, D denotes
participation or treatment, where D = 1 if the individual/unit is treated and D = 0
otherwise. Now, we can define Y(0), the potential outcome in absence of treatment, and
Y(1) the potential outcomes if treated. Note that these potential outcomes are for the same
unit/individual under counterfactual cases. We observe D and

Y = Y(1)1{D = 1}+ Y(0)1{D = 0} = DY(1) + (1 − D)Y(0)

The key insight is that we observe either Y(1) or Y(0), but not both. As econometricians,
we are interest in the effect of treatment, that is Y(1)− Y(0).

6.2 Objects of interest

6.2.1 Building the objects

A popular object of interest is the Average Treatment Effect (ATE):

θATE = ATE = E(Y(1)− Y(0))

or it’s conditional version

θATEx = ATEx = E(Y(1)− Y(0)|X = x)

Similarly, we can define the Average Treatment Effect on the Treated (ATT):

θATT = ATT = E(Y(1)− Y(0)|D = 1)

which is conditional on treatment. It answers the question: how does a program change
the outcome for treated units compared to what they would have experienced if they had
not participated?

We can finally define the Local Average Treatment Effect (LATE):

θLATE = LATE = E(Y(1)− Y(0)|D(z) ̸= D(z′))
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which measures the effect of treatment on persons who change state in response to a
change in Z (they are at the margin of being treated). D(z) is the conditional random
variable D given Z = z. When the instruments are indicator variables denoting different
policy regimes, LATE is interpreted as the response to policy changes for those who change
participation status in response to the change.

6.2.2 Understanding the objects

First, note that if there was an homogenous response, that is if all individuals were affected
by a policy intervention in the same way, ∆ ≡ Y(1)−Y(0), all measures would be identical

θATE = θATT = θLATE

In general, this is not the case. We can first think about a case where the is a homogenous
response to a policy conditional on X, ∆(X) ≡ Y(1) − Y(0). That is, within a group
(created based on observables), people respond in the same way. Formally, this means

θATEx = θATTx = θLATEx

To reach identification, we need to add a support requirement (sometimes called overlap
assumption)

0 < P(D = 1|X = x) < 1, ∀x

This means that within a group, we always have non-treated and treated observations.
Now, understand that having similar conditional response does not necessarily generalize
to the unconditional case. Indeed, ATE averages ATEx over the whole population while
ATT averages ATTx over the treated subpopulation only.

Now, in general, even conditional on X, there is unobservable heterogeneity. In this case,
we would write

∆ + U(1)− U(0) ≡ Y(1)− Y(0)

U(1) − U(0) represents the idiosyncratic gain from treatment (heterogeneity that the
econometrician cannot see). But notice that generally,

E(U(1)− U(0)|D = 1, X = x) ̸= E(U(1)− U(0)|D = 0, X = x)

which implies that individuals choose to participate in a program based on their own
unobserved potential gains. This is the first time we encounter selection bias: people who
expect to benefit more from the treatment (U(1)− U(0) is high) are more likely to select
into treatment (D = 1). This is known as the “Roy Model” type selection. In this case,
the treated group is not a random sample of the population, but a group that likely has
higher-than-average returns to treatment. Consequently, ATTx ̸= ATEx.
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6.3 The counterfactual and Selection Bias

6.3.1 The Problem

A key concept in the study of treatment effects is the counterfactual. Consider the condi-
tional ATTx

θATTx = E(Y(1)|D = 1, X = x)− E(Y(0)|D = 1, X = x)

It is obvious that we do not observe E(Y(0)|D = 1, X = x): this represents what would
have happened to someone that was treated if they were not treated. Now, an idea would
be to use E(Y(0)|D = 1, X = x) as a proxy for it. ATTx would therefore be rewritten as

θATTx = E(Y(1)|D = 1, X = x)− E(Y(0)|D = 0, X = x)

= E(Y(1)|D = 1, X = x)−E(Y(0)|D = 1, X = x)+E(Y(0)|D = 1, X = x)−E(Y(0)|D = 0, X = x)

Therefore, we have the following

E(Y|D = 1, X)− E(Y|D = 0, X)︸ ︷︷ ︸
Observed Difference

= E(Y(1)− Y(0)|D = 1, X)︸ ︷︷ ︸
ATTx

+E(Y(0)|D = 1, X)− E(Y(0)|D = 0, X)︸ ︷︷ ︸
Selection Bias

ATTx is the "true effect" for the people who actually took the treatment. The selection bias
term represents the difference in the starting point. It asks: "Even without the treatment,
would the treated group have performed differently than the untreated group?". If the
treated group is more motivated/healthier/wealthier by nature, then E(Y(0)|D = 1) >
E(Y(0)|D = 0), and we will overestimate the treatment effect.

6.3.2 Some solutions

First, if we are using experimental data, randomized experiments can solve the prob-
lem of selection bias. The idea is randomization solves this by making the treatment
D independent of potential outcomes (Y(0), Y(1)). This ensures that E[Y(0)|D = 1] =
E[Y(0)|D = 0], effectively killing the selection bias and leaving you with just the treatment
effect. Formally, we need the treatment D to be assigned independently of the subjects’
characteristics. Mathematically, this is expressed as:

(R) (Y(0), Y(1)) ⊥ D

We need to consider cases with non-experimental data too. In the absence of a truly
randomized experiment (R), we often rely on the CI Assumption (also known as "Selection
on Observables"). We assume that the treatment assignment is "as good as random" once
we control for a set of observed covariates X. Formally,

(CI) (Y(0), Y(1)) ⊥ D | X

Under CI, the selection bias term we derived earlier vanishes for individuals with the same
X. This implies: E[Y(0)|D = 1, X] = E[Y(0)|D = 0, X] = E[Y(0)|X]. Consequently, we
can identify ATEx and ATTx simply by comparing treated and untreated units within the
same X groups.
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6.4 Estimation

6.4.1 Outcome specification

In many economic contexts, (CI) is too strong. Even if we control for X (like education or
age), there is often unobserved heterogeneity (U1 − U0) that affects both the decision to
participate (D) and the potential outcomes. To understand this selection on unobservables
problem, consider the following structural model

Y(0) = g0(X) + U0 and Y(1) = g1(X) + U1

where g(X) represents the mean outcome based on observables and U represents the
unobservable components. Notice that this implies that E[U0|X] = E[U1|X] = 0. Now,
remember that

Y = (1 − D)Y(0) + DY(1)23

By defining ∆(X) = g1(X)− g0(X) as the mean gain, we can write the observed outcome
Y as:

Y = g0(X) + D · ∆(X) + [U0 + D(U1 − U0)]

Using this notation, we can clearly see why these effects differ when there is unobserved
heterogeneity:

ATE(x) = E[Y(1)−Y(0)|X = x] = g1(x)− g0(x) and ATT(x) = ATE(x)+E[U1 − U0|D = 1, X = x]︸ ︷︷ ︸
Unobserved Gain

These two are equal only in cases where there are no unobservable components of the
gain (U1 = U0), or if U1 − U0 does not determine who goes into the program (treatment
uncorrelated with error).

Now, we can rewrite the observed outcome equation to highlight the specific estimation
challenges:

Y = g0(X) + D · ATE(x) + ε

where ε = U0 + D(U1 − U0). To identify ATE(x), we need the treatment D to be un-
correlated with the entire error term ε. However, endogeneity arises from two distinct
sources:

• Correlation with U0. This is the standard selection bias (levels). People with higher
baseline outcomes might be more/less likely to participate.

• Correlation with (U1 − U0). This is selection on gains. People who expect higher-
than-average idiosyncratic benefits are more likely to participate.

Even if we only want to estimate the effect on those who actually participated (ATT), we
still face an endogeneity problem. Recall

ATT(x) = g1(X)− g0(X)︸ ︷︷ ︸
ATE(x)

+E(U1 − U0|D = 1, X = x)

23Recall it is an easy way to represent Y = Y(1)1{D = 1}+ Y(0)1{D = 0}
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=⇒ g1(X)− g0(X) = ATT(x)− E(U1 − U0|D = 1, X = x)

Substituting this in our main expression for Y yields

Y = g0(X) + D [ATT(x)− E(U1 − U0|D = 1, X = x)] + U0 + D(U1 − U0)

By rearranging the terms, we can write:

Y = g0(X) + D · ATT(x) + {U0 + D[U1 − U0 − E(U1 − U0|D = 1)]}

The problem remains: D is correlated with U0. Even if there is no selection on gains, the
simple difference in means is still biased if there is a selection on levels (U0).

6.4.2 Participation Decision

In this framework, the choice to participate (D = 0 versus D = 1) is driven by a latent
variable IN, which represents the net profit or net utility of treatment. An individual
decides to participate if the expected utility is non-negative:

D = 1{IN ≥ 0}

The index IN is typically modeled as a function of both observed and unobserved factors:

IN = g(Z, V)

Z is a vector of observable characteristics. Note that Z usually includes X (the covariates
from the outcome equation) plus at least one instrument that affects the decision to
participate but does not directly affect the potential outcomes. V is an unobserved random
component representing idiosyncratic shocks to the participation decision. A common
way to write this index is linearly:

IN = Zγ + V

Under this specification, the probability of participation (the propensity score) is:

P(Z) = P(D = 1|Z) = P(V ≥ −Zγ)

As before, the selection problem occurs if the unobservables in the participation decision
(V) are correlated with the unobservables in the outcome equations (U0, U1).

6.5 Instrumental Variables

The core idea of IV is to find a variable Z that acts as a "shifter." It must be powerful
enough to change the probability that someone takes the treatment (D), but "clean" enough
that it has no independent effect on the outcome (Y). As always, the first condition is
relevance: P(D = 1|X, Z) must actually depend on Z. This ensures there is "independent
variation" in D generated by Z. The second condition is exogeneity or validity: Z must be
uncorrelated with the unobserved potential outcomes. The dependence of Y on Z must
operate only through D.
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6.5.1 The structural setup for IV

Recall the outcome equation

Y = g0(X) + D · ATE(x) + [U0 + D(U1 − U0)]

Additionally, we have the participation decision written as

D = 1{g(Z, V) ≥ 0}

In this setup, we assume that Z is a variable that satisfies mean independence:

E(U0 + D(U1 − U0)|X, Z) = 0

This identifying condition is what allows us to isolate the effect of D on Y by using only
the part of D that was triggered by the "random-like" movement of the instrument Z.

When we want to estimate an ATT, the outcome equation is

Y = g0(X) + D · ATT(x) + {U0 + D[U1 − U0 − E(U1 − U0|D = 1)]}

Therefore, the identifying assumption is

E{U0 + D[U1 − U0 − E(U1 − U0 | X, D = 1)] | X, Z} = 0

This is a weaker identifying condition for the ATT. It acknowledges that while individuals
might select into treatment based on gains (violating the ATE assumption), the instrument
Z itself remains "clean" of the baseline levels and the specific variation in gains.

Regardless of whether you want ATE or ATT, the instrument must satisfy the relevance
condition: E(D | X, Z) = P(D = 1 | X, Z) must depend on Z. This means there must
be independent variation in D generated by Z. If Z doesn’t change the probability of
participation, it cannot help us identify the effect.

Because we have assumed the instrument is independent of the error terms (U0, U1), when
you take the expectation E(ε|X, Z), those terms drop out (become zero), leaving only the
part of the model that depends on observables. For the ATE,

E(Y|X, Z) = g0(X) + E(D|X, Z)︸ ︷︷ ︸
P(D=1|X,Z)

·ATE(x) + E(U0 + D(U1 − U0)|X, Z)︸ ︷︷ ︸
=0

=⇒ E(Y|X, Z) = g0(X) + P(D = 1 | X, Z) · ATE(x)

For the ATT,

E(Y|X, Z) = g0(X) + E(D|X, Z)︸ ︷︷ ︸
P(D=1|X,Z)

·ATT(x) + E(εATT|X, Z)︸ ︷︷ ︸
=0

=⇒ E(Y|X, Z) = g0(X) + P(D = 1 | X, Z) · ATT(x)
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6.5.2 IV estimation

Now, suppose we have a binary instrument Z ∈ {0, 1}, you can now derive what is called
the Wald Estimator by comparing the outcomes at Z = 1 and Z = 0. Subtracting the two
reduced-form equations (for Z = 1 and Z = 0) cancels out the baseline g0(X):

E(Y|X, Z = 1)− E(Y|X, Z = 0) = [P(D = 1|X, Z = 1)− P(D = 1|X, Z = 0)] · θ

Solving for θ gives you the famous Wald formula:

θIV =
E(Y|X, Z = 1)− E(Y|X, Z = 0)

P(D = 1|X, Z = 1)− P(D = 1|X, Z = 0)

Notice that this relies on the assumption that P(D = 1|X, Z = 1) ̸= P(D = 1|X, Z = 0),
which is once again the relevance condition: the instrument switching from 0 to 1 should
have an impact on the probability of treatment.

This ratio reveals the core logic of instrumental variables. The numerator, E(Y|X, Z =
1) − E(Y|X, Z = 0), is known as the Reduced Form; it captures the total effect of the
instrument on the outcome of interest. However, since the instrument only affects the
outcome indirectly through the treatment D, this raw difference understates the true
treatment effect because not everyone in the Z = 1 group actually receives the treatment.
To correct for this, we divide by the first stage, P(D = 1|X, Z = 1)− P(D = 1|X, Z = 0),
which measures how much the instrument actually impacts treatment participation. By
dividing the reduced form by the first stage, we "blow up" the instrument’s effect to recover
the full impact of the treatment itself. Notice that this is exactly the same idea as what we
found in Section 4: β̂IV = Π̂−1λ̂.

6.5.3 LATE

We now introduce more formally the assumption of Local Average Treatment Effect (LATE).
Imagine a binary instrument (e.g., being randomly assigned a voucher for a private school).
For any individual, we can define their treatment status as D(z). This gives us four types
of people.

• Never-takers: People who never take the treatment regardless of the instrument
(D(1) = 0, D(0) = 0)

• Always-takers: People who always take the treatment regardless of the instrument
(D(1) = 1, D(0) = 1)

• Compliers: People who take the treatment if they get the instrument, and don’t
if they don’t (D(1) = 1, D(0) = 0). These are the only people whose behavior is
actually changed by the instrument

• Defiers: People who do the opposite of what the instrument suggests (D(1) =
0, D(0) = 1).
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To identify LATE, we must assume Monotonicity (also known as the "No Defiers" as-
sumption). It states that while the instrument might have no effect on some people
(Always-takers/Never-takers), it must not push people in opposite directions. The idea is
that we compare the same person in two counterfactual cases. Monotonicity implies that
a person who does not go to private school receiving a voucher would not go to private
school without the voucher either. Formally, we write Di(1) ≥ Di(0) for all i.

Under Monotonicity and the IV assumptions (Relevance and Validity), the Wald estimator
identifies the Local Average Treatment Effect:

θLATE = E[Y(1)− Y(0) | D(1) > D(0)]

This is the average effect of treatment only for the compliers. In our school example,
this corresponds to the average effect on test score for people who choose private school
because they have received a voucher.

While LATE provides high internal validity (it solves the selection problem for the marginal
group), it has limitations regarding external validity. It does not provide information
about:

• Always-takers: Those who participate regardless of the instrument’s value.

• Never-takers: Those who refuse participation regardless of the instrument’s value.

Therefore, a LATE estimate from a voucher program might not accurately predict the effect
of a universal private schooling mandate (the ATE).

6.6 Some other topics

6.6.1 The Two-Step Heckman Estimator

I don’t think it makes much sense introducing this without building everything from
the usual limited dependent variables section. That is, it would be nice to start from
probit/logit, moving on to some Tobit models and arrive at this point. I will maybe add
this to the notes at some point. Still, let us discuss this quickly.

The Heckman estimator is designed to correct for Sample Selection Bias, which occurs
when the observed sample is not a random draw from the population. This is viewed
as a form of omitted variable bias where the omitted variable is the “selectivity” of the
individuals.

The estimation proceeds in two stages:

1. Selection Stage: Estimate a Probit model of the participation decision Di = 1{Ziγ +
vi > 0}. From this, calculate the Inverse Mills Ratio (λi), which represents the
probability density over the cumulative distribution of the selection shock.
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2. Outcome Stage: Estimate the outcome equation (e.g., wages) via OLS, including the
Inverse Mills Ratio as an additional covariate:

Yi = Xiβ + σuvλi + ϵi

Including λi effectively controls for the unobserved factors that lead to selection, allowing
for consistent estimation of β even when the sample is non-random.

6.6.2 Matching

Matching is a quasi-experimental design that re-establishes experimental conditions by
pairing treated units with similar non-treated units. It does not require a particular
specification of the participation decision or the outcome equations. The identification
assumptions can be written as follows:

• Conditional Independence (M1): Selection is based entirely on observables X. For-
mally, E[Y0 | D = 1, X] = E[Y0 | D = 0, X].

• Common Support (M2): For all X, 0 < P(D = 1 | X) < 1. This ensures every treated
agent has a potential counterpart in the non-treated population.

The Estimator: The treatment effect for a treated individual is estimated by:

∆̂i = Y1i − ∑
j∈C

WijY0j

where Wij are weights assigned to control units based on their similarity to treated unit i.

OLS can be interpreted as a form of matching. Under the classic conditional mean inde-
pendence assumption (E[u|T, X] = E[u|X]), running OLS on:

Y = α + βT + X′γ + v

provides consistent estimates for β, though these coefficients may not be strictly causal if
unobservables are present.

Applying the Frisch-Waugh-Lovell theorem, we can think of OLS as orthogonalizing the
treatment T with respect to X, effectively creating many "cells" of individuals with similar
X and comparing treated vs. untreated units within those cells. Propensity score matching
is often preferred over OLS because it does not require a linear specification and explicitly
handles the challenge of common support. It reduces the dimensionality of X by matching
units based on their predicted probability of treatment, P(X) = P(D = 1 | X).
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6.6.3 Difference-in-differences

I provide a super short intro to DiD here. The classical before-after estimator compares
the outcomes of participants after they participate in the program with their outcomes
before they participate. Consider the simple model where we have a panel and data on
participatino before and after they participate in period k

yit = x′itβ + di∆ + u0it

where di = 1{t > k} and u0it = αi + εit, where i is some individual heterogeneity (which
can include heterogenous gain from treatment).

Suppose that selection is only allowed on the permanent error component αi. This means
that εit is a random error term, E(εitdi) = 0 and εit ⊥⊥ εis for all s ̸= t but we allow
E(αidi) ̸= 0. As we will see in the panel data section below, a consistent estimator of the
average treatment effect is the fixed effect estimator

yit′ − yiτ = (xit′ − xiτ)
′β + di∆ + (uit′ − uiτ) for t′ > k > τ

In practice, we need a setting with absence of economy-wide factors affecting participants
outcomes. The DiD estimator eliminates both common macro effects and individual spe-
cific fixed effects by substracting the before-after change for participant outcomes. The
critical identifying assumption is that conditional on X, the biases are the same on average
in different time periods before and after the period of participation in the program so that
differencing the differences between participants and nonparticipants eliminates the bias.

Formally, the main assumption is the parallel trends assumption. This is the most critical
identification condition. It requires that, in the absence of treatment, the average change
in potential outcomes for the treated group would have been the same as the observed
average change for the control group:

E(u0it′ − u0iτ|Di = 1, Xi) = E(u0it′ − u0iτ|Di = 0, Xi)

for time periods before (τ < k) and after (t′ > k) the treatment starts. Additionally,
selection into treatment must be independent of the temporary shocks εit. Formally:
E(εit|Di, Xi) = 0. To ensure the biases cancel out, the time periods compared (t′ and
τ) should ideally be equally far from the treatment period k to satisfy the stationarity
assumption (stationarity).

The DiD estimator effectively "washes out" αi by differencing over time within units, and
it "washes out" θt by differencing across the treated and control groups.

7 Panel Data

A panel data (pooled cross section and time series) regression differs from a regular time-
series or cross-section regression in that it has a double subscript on all variables {yit, xit}
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for i = 1, ..., n and t = 1, ..., T. i denotes the cross-sectional dimension (individuals, house-
holds, firms, etc.) and t the time-series dimension (days, weeks, etc.). Different types of
variables can be included in a panel. We can have variables that vary across individuals
and time, such as wage, age, years of experience. Some variables are time invariant such as
race. Finally, some variables vary only over time, but not across individuals, in general
aggregate/macro factors (e.g. unemployment).

Another important bit of terminology is what we call complete or balanced panels, where
individuals are observed over the entire sample periods. Unbalanced panels occur in case
where some {it} is missing. We focus on balanced panels. Typically, we will be concerned
with situations where T is small and n is large: fixed T and n → ∞.

7.1 Fixed Effects Models

Consider the following linear model

yit = α + x′itβ + uit

with xit a k dimensional vector of explanatory variables, not including a constant. For any
t, we assume xit ∼ i.i.d across individuals. An error component model (ECM) specifies
the structure of the error. Let µi be an unobservable individual-specific effect, λt an
unobservable time effect and vit and idiosyncratic component, where we assume vit ∼
iid(0, σ2) on i and t. We call one-way ECM a model of the form

uit = µi + vit or uit = λt + vit

We call a two-way ECM a model of the form

uit = µi + λt + vit

If characteristics that have a direct effect on both dependent variable and explanatory
variables are omitted, then explanatory variables are correlated with the regression error
and, consequently, estimators of the coefficients will be inconsistent. A traditional response
of econometrics to this problem has been instrumental variables models. However, it is
often very difficult to find instruments. A major motivation for using panel data has
been the ability to control for (possibly correlated) time-invariant heterogeneity without
observing it.

7.1.1 General case

In fixed effects models, we treat µi as n fixed unknown parameters. Consider our one way
ECM :

yit = α + µi + x′itβ + vit

The main assumption in this context is strict exogeneity

E(vit|xi1, ..., xiT) = 0, ∀t
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We can rewrite this model as

yit = α +
n

∑
j=1

µjdij,t + x′itβ + vit

where dij,t = 1{i = j}. Note that if we have perfect collinearity with α (if we sum through
all dij,t, we get 1). Therefore, we need to drop the constant and write

yit =
n

∑
j=1

µjdij,t + x′itβ + vit

To estimate the model efficiently, we stack the observations, dropping the subscript t. For
a single individual i, the model is:

yi = ιTµi + Xiβ + vi,

where the components are:

yi︸︷︷︸
(T×1)

=


yi1
yi2
...

yiT

 , ιT︸︷︷︸
(T×1)

=


1
1
...
1

 , Xi︸︷︷︸
(T×k)

=


x′i1
x′i2
...

x′iT

 , vi︸︷︷︸
(T×1)

=


vi1
vi2
...

viT


Stacking all n individuals, we define the matrix equation:

y = Dµ + Xβ + v

With the following block definitions:

y︸︷︷︸
(nT×1)

=


y1
y2
...

yn

 , µ︸︷︷︸
(n×1)

=


µ1
µ2
...

µn

 , v︸︷︷︸
(nT×1)

=


v1
v2
...

vn

 , X︸︷︷︸
(nT×k)

=


X1
X2
...

Xn


The matrix D is the matrix of individual dummies, defined using the Kronecker product:

D︸︷︷︸
(nT×n)

= In ⊗ ιT =


ιT 0 0 . . . 0
0 ιT 0 . . . 0
...

...
... . . . ...

0 0 0 . . . ιT


Matrix D is a "selector." When you multiply Dµ, the first column of D picks out µ1 and
applies it to of person 1’s observations (T of them), the second column picks µ2 for person
2, and so on.
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Example 7.1: Visualizing Panel Matrices (n = 2, T = 2)

Suppose we have two individuals, Alice (i = 1) and Bob (i = 2), observed for two
years. Our model is yit = µi + βxit + vit.

For Alice (i = 1):

y1 =

(
y11
y12

)
, X1 =

(
x11
x12

)
, ι2 =

(
1
1

)
For Bob (i = 2):

y2 =

(
y21
y22

)
, X2 =

(
x21
x22

)
, ι2 =

(
1
1

)
The stacked outcome vector y and regressor matrix X (size nT × 1 = 4 × 1) are:

y =


y11
y12
y21
y22

 , X =


x11
x12
x21
x22


D = I2 ⊗ ι2 creates the columns that assign µ1 to Alice and µ2 to Bob:

D =


1 0
1 0
0 1
0 1

 , µ =

(
µ1
µ2

)

When we calculate Dµ, we get a vector where the first two rows are µ1 and the last
two are µ2. This allows each individual to have their own "fixed" intercept over time.

We estimate the stacked model y = Dµ + Xβ + v via OLS. Under the assumption that
E[vv′] = σ2

v InT, OLS is efficient. However, the following conditions must hold for identifi-
cation:

• Time Dimension: T ≥ 2. If T = 1, µi cannot be calculated as it is perfectly con-
founded with the error term.

• Variation: X must not contain time-invariant regressors, as these would be perfectly
collinear with the columns of D.

Direct OLS estimation is often unattractive because it requires handling the (nT × n)
matrix Dand inverting a (n + k)× (n + k) matrix, which is computationally taxing for
large n. We are typically only interested in β, making the estimation of all n values of µ
unnecessary.

7.1.2 The Within Estimator (Demeaning)

A numerically efficient way to estimate β is to use the Frisch-Waugh-Lovell (FWL) Theo-
rem. In our stacked model y = Dµ + Xβ + v, the matrix of individual dummies D plays
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the role of the variables we wish to partial out. Indeed, we write the partition as [D : X].

We define the projection matrix MD as:

MD = InT − D(D′D)−1D′

Recall D = In ⊗ ιT. We derive MD = InT − D(D′D)−1D′ as follows:

1. D′D = 24(In ⊗ ιT)
′(In ⊗ ιT) = In ⊗ ι′T ιT = TIn

2. D(D′D)−1D′ = (In ⊗ ιT)(
1
T In)(In ⊗ ι′T) = In ⊗ 1

T JT where JT = ιT ι′T

3. MD = InT − In ⊗ 1
T JT

Now, look at the projection part PD = D(D′D)−1D′, which we have shown is equal to
In ⊗ 1

T JT, where JT is a T × T matrix of all ones. When you multiply 1
T JT by an individual’s

vector yi, you get:

1
T

1 . . . 1
... . . . ...
1 . . . 1


yi1

...
yiT

 =

ȳi
...

ȳi


This operation simply calculates the mean for that person and repeats it T times.

Now, apply the full MD = InT − PD matrix to the vector y:

MDy = (InTy)− (PDy)

MDy =


y11
y12

...
ynT

−


ȳ1
ȳ1
...

ȳn

 =


y11 − ȳ1
y12 − ȳ1

...
ynT − ȳn


Therefore, we get

MDy = y − ȳi where ȳi =
1
T

T

∑
t=1

yit

Thus, the FE estimator β̂FE = (X′MDX)−1X′MDy obtained by FWL is the OLS estimator
of the regression of (yit − ȳi) on (xit − x̄i). β̂FE is the estimator that we obtain if we first
project out the group effects µi by measuring the individual observations in deviations
from group means. This is known as within variation: we study how individuals varies
compared to its own mean.

Intuition: The fixed effects estimator exploits variation within each individual over time,
effectively comparing each person to themselves. By subtracting individual-specific means
(demeaning), we remove all time-invariant characteristics—both observed and unob-
served—that might confound our estimates. This transformation asks: when individual i

24Using the properties of Kronecker products (A ⊗ B) · (C ⊗ D) = (AC ⊗ BD)
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experiences a change in xit relative to their own average, how does yit change relative to
their own average? This "within" comparison controls for any fixed individual heterogene-
ity µi, whether it’s ability, preferences, or other unchanging traits.

The estimator is unbiased under the strict exogeneity assumption:

E(vit|xi1, . . . , xiT) = 0 ∀t

Substituting the model y = Dµ + Xβ + v into the estimator formula:

E(β̂W |X) = E
[
(X′MDX)−1X′MD(Dµ + Xβ + v)

]
Since MDD = 0, the µ term drops out:

E(β̂W |X) = β + (X′MDX)−1X′MDE(v|X)

Under strict exogeneity, E(v|X) = 0, so E(β̂W |X) = β

The requirement for consistency is E[(xit − x̄i)(vit − v̄i)] = 0.

• Small T: Requires Strict Exogeneity (xit uncorrelated with vis for all s, t) because v̄i
contains errors from all periods.

• Large T: As T → ∞, v̄i and x̄i converge to their expectations. In this case, Contempo-
raneous Exogeneity (E[xitvit] = 0) is sufficient for consistency.

This is why Fixed Effects is often considered "safer" in long panels (T is large) than in short
panels where feedback loops can violate strict exogeneity.

Assuming the idiosyncratic errors are homoskedastic and serially uncorrelated (V(v|X) =
σ2

v InT), the variance of the estimator is:

V(β̂W |X) = σ2
v (X′MDX)−1

σ2
v is consistently estimated as

σ̂2
v =

RSS
nT − n − k

where RSS is the residiual sum of squares from the within-transformed model. Notice that
we subtract n + k because this is the number of unknown parameters (n fixed effects, k
regressors).

While OLS is used for the within-transformed model, the disturbances ṽit = vit − v̄i
are correlated by construction. Usually, when disturbances are correlated, we use GLS
to achieve efficiency. However, GLS is not an option here because the transformed id-
iosyncratic errors ṽit = vit − v̄i necessarily sum to zero for each individual: ∑T

t=1 ṽit = 0.
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This constraint implies that the T disturbances for each individual are linearly depen-
dent, making the resulting nT × nT covariance matrix E[MDv(MDv)′] = σ2

v MD singular.
Consequently, the standard GLS estimator is not defined for the within-transformed model.

To account for this correlation and potential heteroskedasticity, we typically cluster stan-
dard errors at the individual (or treatment) level. Indeed, OLS standard errors assume
that the residuals are i.i.d. However, in the FE model, even if the original vit were i.i.d.,
the transformed residuals (vit − v̄i) are correlated because they all share the same v̄i term.
This correlation is strictly internal to the individual (the "cluster"). If we ignore this, our
standard errors will be biased (usually downward), leading to over-rejection of the null
hypothesis (t-statistics that are artificially high).

Formally,
RSS

nT − k
p−→ T − 1

T
σ2

v

Since T − 1 < T, which is strictly smaller than the true variance. This is why we use

σ̂2
v =

RSS
nT − n − k

=
RSS

nT − k
· nT − k

n(T − 1)− k
p−→ T − 1

T
σ2

v ·
T

T − 1
= σ2

v

Once we have obtained a consistent estimate β̂ via the within-estimator, we can recover
the estimated fixed effects µ̂i. Using the FWL theorem, the vector of fixed effects is:

µ̂ = (D′D)−1D′(y − Xβ̂)

For each individual i, this simplifies to a very intuitive result:

µ̂i = ȳi − x̄′i β̂

The fixed effect µi is defined as the constant level of y for individual i that cannot be ex-
plained by the variation in xit. Therefore, it is simply the difference between their average
outcome and the predicted average outcome based on their characteristics.

While β̂ is consistent as n → ∞, remember that µ̂i is not consistent if T is fixed. We only
have T observations to estimate each specific µi, so the estimation error in µ̂i does not
vanish unless the number of time periods grows (T → ∞).

7.1.3 Two-way ECM with FE

Consider our two way ECM :

yit = α + µi + λt + x′itβ + vit

Here again, we have a multicollinearity problem. Indeed, the sum of µi and the sum of λt
both give 1. In general, we keep α and drop one individual and one time FE, say µn = 0
and λT = 0.
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The OLS estimation of this model is very similar to the one-way ECM. Omitting the
derivations, we get

yit − ȳi − ȳt + ȳ = (xit − x̄i − x̄t + x̄)′β + vit − v̄i − v̄t + v̄

In practice, this is a version of the within-estimator in which we are also removing period-
specific shocks across all individuals.

7.1.4 Drawbacks of the fixed-effect model

One of the main drabacks of this model is that it fails to identify any components of β
corresponding to regressors that are constant over time for a given individual (e.g. race, re-
ligion, etc.), since they are absorbed in the individual fixed effect. Indeed, they are perfectly
collinear with the individual fixed effect D and are wiped out by the MD transformation.

Coefficients of time-varying regressors are estimable, but these estimates may be very
imprecise if most of the variation in a regressor is cross sectional rather than over time. We
can diagnose this using the Stata command xtsum, which decomposes total variance into:

• Between variation: x̄i − x̄, the variation across different individuals.

• Within variation: xit − x̄i, the variation over time for the same individual.

If the within variation is small relative to the between variation, the FE estimator will have
large standard errors because it relies solely on that thin "within" slice of data.

For example, in a short panel, education level is often time-invariant for most adults. Since
MD removes the cross-sectional differences in education levels, β̂educ would be identified
only by the few individuals who completed a degree during the sample period. This leads
to a loss of power compared to a Random Effects (introduced below) or Pooled OLS model.

Additionally, prediction of the absolute conditional mean is not possible because the indi-
vidual intercepts µi are treated as nuisance parameters and are not consistently estimated
for fixed T. We can only predict changes in the dependent variable caused by changes in
time-varying regressors.

7.2 Random Effects Models

Consider again the one way ECM:

yit = α + x′itβ + uit

with xit being i.i.d and uit = µi + vit . In this case, individual effects µi are assumed to
be random and are treated as drawings from the same distribution µi ∼ i.i.d(0, σ2

µ). We
further assume vit ∼ i.i.d(0, σ2

v ). Additionally, we assume strict exogeneity

E(vit|xi1, ..., xiT) = 0, ∀t
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and assume µi ⊥⊥ vit, E(µi|xi1, ..., xiT) = 0. Note that here, the is no dummy variable trap,
so we do not need to drop any constant term.

Denote the variance-covariance matrix Ω ≡ V(u). The diagonal elements of Ω can be
written as

V(uit) = V(µi + vit) = σ2
µ + σ2

v + 2Cov(µi, vit) = σ2
µ + σ2

v

For the covariance elements, we have

Cov(uit, uis) = Cov(µi + vit, µi + vis) = E ((µi + vit)(µi + vis)) = σ2
µ

This is true for any i across time periods within an individual. Now, Cov(uit, uis) = 0 for
any i ̸= j since we assumed independence. Therefore, we can write Ω = σ2

v InT + σ2
µ In ⊗ JT

Therefore, the variance-covariance matrix of the composite errors, Ω = E[uu′], is an
nT × nT block-diagonal matrix. Each T × T block corresponds to an individual i and has
a specific structure where the diagonal is σ2

µ + σ2
v and all off-diagonals are σ2

µ.

Ω =



σ2
µ + σ2

v · · · σ2
µ

... . . . ...
σ2

µ · · · σ2
µ + σ2

v

 0 · · · 0

0

σ2
µ + σ2

v · · · σ2
µ

... . . . ...
σ2

µ · · · σ2
µ + σ2

v

 · · · 0

...
... . . . ...

0 0 · · ·

σ2
µ + σ2

v · · · σ2
µ

... . . . ...
σ2

µ · · · σ2
µ + σ2

v




Rewriting the model as y = X′β + u, we can use a pooled OLS estimator:

β̂OLS = (X′X)−1X′y

OLS is unbiased and consistent, but not efficient because of the non-spherical errors. We
can therefore use a pooled GLS estimator

β̂GLS = (X′Ω−1X)−1X′Ω−1y

which is consistent and BLUE.

Now, the Between Estimator discards all information regarding how individuals change
over time and focuses exclusively on the variation between individuals. We apply the
projection matrix PD = D(D′D)−1D′ = In ⊗ 1

T JT to our model:

PDy = PDXβ + PDu
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In scalar form, this is equivalent to running OLS on the individual time-averages:

ȳi = α + x̄′i β + ūi, i = 1, . . . , n

where ūi = µi + v̄i. The between estimator is written as

β̂B = (X′PDX)−1X′PDy

• Consistency: β̂B is consistent if E[ūi|x̄i] = 0, which is satisfied under the RE assump-
tion E[µi|X] = 0.

• Efficiency: It is generally inefficient compared to GLS because it collapses nT obser-
vations into only n averages, throwing away the "within" variation.

We can also rewrite our within estimator as hat

βW = (X′MDX)−1X′MDy

which is also unbiased and consistent but inefficient.

Now, recall P (which we called PD) and M (which we called MD) are symmetric, idem-
potent, and orthogonal projectors (P × M = 0). Now, since P = In ⊗ 1

T JT, we have
TP = In ⊗ JT. Additionally, recall M = InT − In ⊗ 1

T JT. It is easy to see that M + P = InT.
Therefore, writing Ω as a function of these projectors, we get

Ω = σ2
v M + (σ2

v + Tσ2
µ)P

This is what we call a spectral decomposition: it expresses Ω as a weighted sum of
its eigen-projections. Now, because P and M are orthogonal, any power of Ω is found
by simply raising the scalar coefficients to that power.To find the inverse, we take the
reciprocal of the coefficients:

Ω−1 =
1
σ2

v
M +

1
σ2

v + Tσ2
µ

P

For GLS, we specifically need the "weighting" matrix Ω−1/2 to transform the data so that
the errors become spherical. Applying the same logic, we take the square root of the
coefficients:

Ω−1/2 =
1
σv

M +
1√

σ2
v + Tσ2

µ

P

By substituting M = InT − P back into this equation, we arrive at the quasi-demeaning
factor θ:

Ω−1/2 =
1
σv

[InT − (1 −
√

θ)P] where θ =
σ2

v
σ2

v + Tσ2
µ

θ is basically the ratio of the idiosyncratic variance to the total weighted variance. For each
observation, the transformation is applied as follows:

yit − (1 −
√

θ)ȳi = [xit − (1 −
√

θ)x̄i]
′β + rit
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where ȳi and x̄i are the individual-specific time averages. rit is the transformed error term
which is now spherical (homoskedastic and uncorrelated), allowing for efficient estimation.
This is therefore consistent, BLUE and asymptotically normal.

Now, let’s try to build some intuition. First, instead of subtracting the entire mean (as in
Fixed Effects), we only subtract a portion of it, (1 −

√
θ), which preserves the between-unit

variation, and allows the model to estimate the effects of time-invariant variables and
potentially increases efficiency.

Remark 7.1: Interpretation of θ

The parameter θ = σ2
v

σ2
v+Tσ2

µ
determines the weight of the quasi-demeaning.

• If θ = 1, we have Pooled OLS. This occurs when there is no individual-specific
variance (σ2

µ = 0).

• If θ = 0, we have the Within Estimator. This occurs as the individual effects
dominate (σ2

µ → ∞) or as the number of time periods T → ∞.

Essentially, RE is a data-driven choice between OLS and FE based on the relative
importance of within-unit and between-unit variance.

7.3 Fixed Effects vs. Random Effects

If both n and T are large, it makes no difference whether we treat individual specific effects
µi as fixed or random because both the within estimator and the GLS estimator become
the same. If T is small and n large, there are differences.

The advantage with FE is that there is no need to assume that individual effects are un-
correlated with covariates, but there is the issue of incidental parameters. For RE, a pro is
that the number of parameters is fixed, allowing for efficient estimation, but it relies on a
strong assumption on uncorrelation of individual effects with covariates.

The choice can be viewed through two lenses:

• Inference Type: Use FE for conditional inference on a specific set of unique units
(e.g., OECD countries). Use RE for unconditional inference where units are treated
as homogeneous drawings from a larger population (e.g., a random sample of
individuals).

• The Consistency-Efficiency Trade-off: RE uses GLS to provide efficient estimates
but requires Cov(µi, xit) = 0. FE remains consistent regardless of this correlation but
is less efficient as it discards between-unit variation.

Decision Rule: The Hausman Test is used to statistically determine if the RE assumption
of zero correlation holds. If the test rejects, the RE estimates are biased, and FE must be
used.
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8 Recent DiD paper

In this section, I discuss a recent paper that I presented during class (Borusyak et al., 2024).

8.1 Research Question

The central research question of this paper asks: How can we estimate dynamic treatment
effects in event studies with staggered treatment adoption and heterogeneous causal
effects in an efficient manner? This question is particularly relevant given the increasing
prevalence of settings where treatment is rolled out to different units at different times,
and where the effect of treatment may vary across units and over time.

8.2 Framework

The paper uses a household-level example to illustrate the framework. Each household i is
treated (that is, has received a tax rebate) from period Ei onwards. We define Kit = t − Ei
as the time (in weeks) relative to treatment.

To study the average treatment effect, researchers typically use the canonical regression
specification: Yit = αi + βt + τDit + εit, where Dit = 1{Kit > 0} is an indicator for whether
unit i is treated at time t.

However, to study the dynamics of the treatment effect, we need a fully dynamic specifica-
tion: Yit = αi + βt + ∑∞

k=−∞ τk1{Kit = k}+ εit, where αi represents individual fixed effects,
βt represents week fixed effects, and τk captures the dynamic causal effects at each relative
time period k.

The estimation target in this framework is τw = ∑it∈Ω1
witτit ≡ w′τ, where τit = Yit −Yit(0)

represents the individual treatment effect for unit i at time t.

8.3 Assumptions

The paper relies on four key assumptions. Assumption 1 is the parallel trend assumption,
which states that for all (i, t) ∈ Ω, the expected value of the untreated potential outcome
can be written as E[Yit(0)] = αi + βt, where Yit(0) is the period t stochastic potential
outcome of unit i if it is never treated.

Assumption 2 is the no anticipation assumption, which requires that for all non-treated
units (i, t) ∈ Ω0, we have Yit = Yit(0). This means that units do not change their behavior
in anticipation of treatment.

Assumption 3’ is an optional parametric model of causal effects, which posits that τ = Γθ,
where θ is an (N1 − M)× 1 vector of unknown parameters and Γ is a known N1 × (N1 − M)
matrix of full column rank. This assumption imposes a linear structure on treatment effects
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so that they can be efficiently estimated and related to each other.

Assumption 4 concerns spherical errors and states that E[εε′] = σ2 IN. While this assump-
tion is useful for the main theorem, it can be relaxed in practice.

8.4 The Underidentification Problem

One of the key insights of the paper is the formal identification of an underidentification
problem in fully dynamic specifications. The paper presents the following proposition.

Proposition 8.1: Underidentification

If there are no never-treated units, the path of {τh}h ̸=−1 coefficients is not point-
identified in the fully dynamic specification. In particular, for any κ ∈ R, the path
{τh + κ(h+ 1)} fits the data equally well, with the fixed-effect coefficients appropriately
modified.

Proof. In the absence of never-treated units and defining τ−1 = 0, we can write

∑
h ̸=−1

τh1{Kit = h} = τKit .

Now consider some collection of {τh} (with τ−1 = 0) and fixed effects α̃i and β̃t. For any
κ ∈ R, let

τ⋆
h = τh + κ(h + 1), α̃⋆i = α̃i + κ(Ei − 1), β̃⋆

t = β̃t − κt.

Then for any observation (i, t),

α̃⋆i + β̃⋆
t + τ⋆

Kit
= α̃i + κ(Ei − 1) + β̃t − κt + τKit + κ(Kit + 1)

= α̃i + β̃t + τKit + κ(Ei − 1 − t + Kit + 1).

Using Kit = t − Ei, we have Ei − 1 − t + Kit + 1 = 0, so

α̃⋆i + β̃⋆
t + τ⋆

Kit
= α̃i + β̃t + τKit .

Thus equation (2) has exactly the same fit under the original and modified fixed effects
and {τh} coefficients, indicating perfect collinearity.

The fundamental identity underlying this problem is that Kit = t − Ei, which implies that
event time is perfectly collinear with unit and time fixed effects. The conclusion is striking:
without restrictions, the model cannot distinguish τk from τk + h · k. Dynamic treatment
effects are identified only up to an arbitrary linear trend.

To understand this result graphically, consider a simple example with two units where one
appears to have a trend and level difference relative to the other. There are two possible
interpretations of this pattern. First, the treatment might have no impact on the outcome,
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with trends merely reflecting features of the environment and the level difference arising
from unit fixed effects. Second, the outcome could be entirely driven by causal effects plus
anticipation. Without additional assumptions, these interpretations are observationally
equivalent.

Figure 3: Underidentification graphically

The paper proposes two solutions to this underidentification problem. The first solution
is to impose a no-anticipation effect and estimate a semi-dynamic model. However, this
requires a strong assumption on anticipation, which must be motivated by an a priori
argument. This approach separates estimation and pre-trend testing through an F-test
on treatment leads, arbitrarily dropping two leads. The second solution is to introduce a
control group of units that are never treated whenever possible, though one should not
allow the control group to be on its own trend.

8.5 Negative Weights Problem

The paper also highlights the problem of negative weights that can arise in standard
two-way fixed effects (TWFE) estimation. To illustrate this, consider a simple example
with two units (A and B) and three periods. Unit A is treated starting in period 2 (EA = 2),
while unit B is treated starting in period 3 (EB = 3), as described in the Table 8.5.

Suppose we estimate the TWFE model:

Yit = αi + βt + τstaticDit + εit

An admissible comparison would be

(YA2 − YA1)− (YB2 − YB1) = τA2
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E[Yit] i = A i = B
t = 1 αA αB

t = 2 αA + β2 + τA2 αB + β2

t = 3 αA + β3 + τA3 αB + β3 + τB3

Event date Ei = 2 Ei = 3

Table 1: Two-Unit, Three-Period Example

which uses unit B as a control for unit A. However, a forbidden comparison would be

(YB3 − YB2)− (YA3 − YA2) = τB3 + τA2 − τA3

which compares already-treated unit A to newly-treated unit B.

The key conclusion is that if τA3 goes up, the apparent treatment effect on B at time 3 goes
down. This means that τA3 receives a negative weight because OLS imposes treatment
effect homogeneity. For large enough relative time periods, when there are no never-
control units, only forbidden comparisons exist, making estimation of long-run causal
effects incorrect.

8.6 The Efficient Estimator

8.6.1 The general theorem

The paper’s main theoretical contribution is an efficient estimator theorem.

Theorem 8.1: Efficient Estimator

Suppose Assumptions 1, 2, 3’, and 4 hold. Among all linear unbiased estimators of τw,
the unique efficient estimator τ̂∗

w is obtained via:

1. Estimate: Within the untreated observations only (i, t) ∈ Ω0, estimate the αi and
βt by OLS in

Yit(0) = αi + βt + εit.

2. Extrapolate: Set Ŷit(0) = α̂i + β̂t and

τ̂∗
it = Yit − Ŷit(0) for each treated observation (i, t) ∈ Ω1

3. Take Averages: Estimate the target τw by a weighted sum,

τ̂∗
w = ∑

(i,t)∈Ω1

wit τ̂∗
it.

This is a powerful result because it shows that efficiency can be achieved while relaxing
some of the more stringent assumptions.
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8.6.2 The Imputation Estimator

The paper provides an imputation representation of the efficient estimator that is particu-
larly useful for practitioners.

Theorem 8.2: Imputation representation of the efficient estimator

With a null Assumption 3’ (that is, if Γ = IN1), the unique efficient linear unbiased
estimator τ̂∗

w of τw from Theorem 0.1 can be obtained via an imputation procedure:

1. Estimate: Within the untreated observations only (i, t) ∈ Ω0, estimate the αi and
βt by OLS in

Yit(0) = αi + βt + εit.

2. Extrapolate: Set Ŷit(0) = α̂i + β̂t and

τ̂∗
it = Yit − Ŷit(0) for each treated observation (i, t) ∈ Ω1

3. Take Averages: Estimate the target τw by a weighted sum,

τ̂∗
w = ∑

(i,t)∈Ω1

wit τ̂∗
it.

8.7 Pre-trend Testing

One of the key insights of the paper is the separation of estimation of treatment effects
from pre-trends testing. To test for pre-trends in the imputation framework, use the sample
of untreated or not yet treated observations to estimate

Yit = αi + βt +
Ei−1

∑
k=Ei−R

τk1{Kit = k}+ εit

for (i, t) ∈ Ω0 Then perform an F-test of joint significance, testing

H0 : τEi−R = · · · = τEi−1 = 0

This approach ensures that the pre-trend test is not contaminated by the estimation of
treatment effects.

8.8 Application: Marginal Propensity to Consume Out of Tax Rebates

The paper provides an application studying the Economic Stimulus Act of 2008, a 100
billion dollar programme that sent tax rebates to approximately 130 million tax filers.
The goal is to estimate the marginal propensity to consume (MPC) out of the tax rebate,
following Broda and Parker, 2014.
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The timing of the tax rebate (measured in weeks) was determined by the last two digits
of the taxpayer’s Social Security number, providing plausibly exogenous variation in
treatment timing. The researchers use the following specification:

Yit = αi + βt +
b

∑
h=−a

τh1{Kit = h}+ εit

where Yit is the dollar amount of spending in calendar week t for household i.

Figure 4: Binned OLS vs. Imputation Estimator

Figure 8.8 shows the difference between OLS and the imputation estimator. The results
comparing binned OLS versus the imputation estimator are striking. The imputation
estimator shows much less persistence than binned OLS. The two-month MPCs are very
different: $73.8 for binned OLS versus $38 for the imputation estimator. This difference
arises because binned OLS uses forbidden comparisons that inflate long-run effects.

The reason for this discrepancy can be understood by considering how OLS estimates
treatment effects at longer horizons. Tax rebates were sent out in a seven-week window.
Information on treatment effects eight weeks after treatment comes from late periods in the
sample and from individuals who were treated early. Crucially, we can never observe τ8
and τ−1 at the same time: if anyone is observed eight weeks after treatment, everyone else
must already be treated. Therefore, OLS performs extrapolations by observing τ8 and τ3 at
the same time, as well as τ3 and τ−1, and inferring something about the difference between
τ8 and τ−1. This works if treatment effects are homogeneous, but not otherwise, espe-
cially if people treated earlier have larger treatment effects, which would be a forbidden
extrapolation.

8.9 Asymptotic Properties

The paper also establishes the asymptotic properties of the imputation estimator. Assump-
tion 5 concerns clustered error terms and requires that errors εit are independent across
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units i and have bounded variance, with Var(εit) ≤ σ̄2 for all (i, t) ∈ Ω. Assumption
6 is the Herfindahl condition, which requires that along the asymptotic sequence, the
Herfindahl norm of the weights

∥v∥2
H = ∑

i

 ∑
t:(i,t)∈Ω

|vit|

2

converges to zero, where vit are the weights in the unbiased linear estimator

τ̂w = ∑
(i,t)∈Ω

vitYit

Under Assumptions 1’, 2, 3’, 5, and 6, the paper establishes consistency:

τ̂w − τw
L2
−→ 0

for any unbiased linear estimator τ̂w of τw, such as τ̂∗
w from the main theorem.

The paper also establishes asymptotic normality. If the assumptions of the consistency
proposition hold, and there exists κ > 0 such that E[|εit|2+κ] is uniformly bounded,

the weights are not overly concentrated (formally, ∑i

(√
nH ∑t:(i,t)∈Ω |vit|

)2+κ
−→ 0),

and the variance does not vanish (lim inf nHσ2
w > 0), then with σ2

w = Var[τ̂w], we have

σ−1
w (τ̂w − τw)

d−→ N (0, 1).

8.10 Key Takeaways

The paper provides several important lessons for practitioners. First, researchers should
use difference-in-differences if they have an ex-ante reason to believe that the parallel
trends and no anticipation assumptions hold. Second, it is crucial to separate pre-trends
testing from the estimation of treatment effects to avoid contamination. Third, researchers
should use a valid control group even in the absence of never-treated units, and the
imputation estimator provides the efficient way to do so.
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A Appendix

A.1 Asymptotic Tools for i.n.i.d. Data

When the error covariance is non-spherical, the sequence of terms used in consistency
proofs, such as xiεi, is often independent but not identically distributed (i.n.i.d.). In this
case, standard i.i.d. Laws of Large Numbers (LLN) cannot be directly applied.
To ensure the Weak Law of Large Numbers (WLLN) holds for a sequence of independent
random variables {Xi}n

i=1 (where Xi = xiεi in the context of OLS with non-spherical
errors), the key requirement is often the condition of Uniform Integrability (UI).

Definition A.1: Uniform Integrability

A sequence of random variables {Xi, i ≥ 1} is uniformly integrable if

lim
δ→∞

sup
i≥1

E[|Xi| · 1{|Xi| > δ}] = 0

The core idea behind uniform integrability is controlling the probability mass in the tails
of the distribution. For convergence theorems like the WLLN, we need to ensure that the
tail behavior (where |Xi| is large, i.e., beyond δ) does not become overwhelmingly large
for any single variable Xi in the sequence.

The condition requires that the expected value of the tail (the portion of the distribution
where |Xi| > δ) goes to zero uniformly for all variables Xi in the sequence as δ increases.
This ensures that no individual variable "carries too much weight" in the limit, which
allows the Law of Large Numbers to hold even when the individual variances (second
moments) are not bounded. We now introduce sufficient and necessary conditons for
uniform integrability.

Theorem A.1: Necessary Conditions for UI

The following condition is necessary for a sequence of random variables {Xi, i ≥ 1} to
be uniformly integrable (UI):

max
i≥1

E(|Xi|) < ∞

Theorem A.2: Sufficient Conditions for UI

The following conditions are sufficient for a sequence of random variables {Xi, i ≥ 1}
to be uniformly integrable (UI):

1. Existence of a Moment Higher than 1: If supi≥1 E{|Xi|1+η} < ∞ for some η > 0,
then {Xi, i ≥ 1} is UI.

2. Identically Distributed: If {Xi, i ≥ 1} is identically distributed (I.D.) and
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E|Xi| < ∞, then {Xi, i ≥ 1} is UI.

The proof of these theorems are fairly easy, but are omitted. What is interesting in our
application is mostly sufficient condition 1. Indeed, it is enough to have finiteness of a
moment slighlty above one to have uniform integrability, which we will see below will
allow us to derive another version of the WLLN.

Theorem A.3: WLLN for Independent, Uniformly Integrable Sequences

Let {Xi}n
i=1 be a sequence of independent and uniformly integrable random variables.

Then
1
n

n

∑
i=1

Xi −
1
n

n

∑
i=1

E[Xi]
p−→ 0.

Application to OLS Consistency: This WLLN is vital in showing the consistency of the
OLS estimator (β̂

p−→ β) when the data is independent but not identically distributed
(i.n.i.d.) due to heteroskedasticity. Specifically, it ensures that the critical term 1

n ∑n
i=1 xiεi

converges in probability to 0, provided the sequence {xiεi} is uniformly integrable.

A.2 Additional derivations

A.2.1 Restricted Least Squares Derivation

Consider the linear regression model

y = Xβ + u

and the linear restrictions
Rβ = c.

The restricted least squares (RLS) estimator is obtained by minimizing

(y − Xβ)′(y − Xβ)

subject to the constraint Rβ = c.
The Lagrangian is

Q(β, λ) = (y − Xβ)′(y − Xβ)− 2λ′(Rβ − c).

Differentiating with respect to β and λ gives

∂Q
∂β

= −2X′y + 2X′Xβ − 2R′λ = 0, (A.1)

∂Q
∂λ

= Rβ − c = 0. (A.2)

From (A.1) we obtain
X′Xβ − R′λ = X′y,
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which implies
β = (X′X)−1X′y + (X′X)−1R′λ.

Define the unrestricted OLS estimator

β̂ = (X′X)−1X′y.

Then
β = β̂ + (X′X)−1R′λ.

Substitute into (A.2):
Rβ̂ + R(X′X)−1R′λ = c.

Rearranging,
R(X′X)−1R′λ = c − Rβ̂.

Assuming R(X′X)−1R′ is nonsingular,

λ =
[
R(X′X)−1R′]−1

(c − Rβ̂).

Substituting back,

β̃ = β̂ + (X′X)−1R′[R(X′X)−1R′]−1
(c − Rβ̂).

This is the restricted least squares estimator.
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